
AD—A055 786 MASSACHUSETTS INST OF TECH CAMBRIDGE OPERATIONS RESE—ETC F/S 12/1 N
A LASRANBEAN RELAXATION ALGORIThM FOR THE TWO DUTY PERIOD SCHED—ETC(U)
JUN 78 w 8 SHEPAROSON DAAG29—76—C—O OSls

UNCLASSIFIED

TR—152 ARO—114261.9—M NL
I v 3 1
A D A

055788 __________________________________ ___________ ___________

o _

_
•__________

I
11

4~
q
~

I C-,

• _._J

--- ..—-.-— .. - . .
~~ ---~-- ,—-——~~~~,—-. . ~~~~~~~~~~~~~~~~~ - --‘-.- -

~~~~

Unclassified
SECURITY CLASSIF ICATION OF THIS PAGE (*l..n 0.1 . Enftr.d)

REPORT DOCUMENTAT ION PAGE BEF c FORM
I. REPORT NUMBER . ~~c~~~~IQN NO. 3. RFCIPIENT S C A T A L OG NUMBE R

—~ Ilepert -

~~~~~~~ 
(/~ 7~f~ /~~ _ _ _ _ _ _ _ _ _ _ _ _

& I IT LE (and SuhH11~~I ~-—-‘.—~~- -.—.. ~~~~~~~~~ ~~~~~YPE OF REPO Tfr .~~~RI~~O COVERED

~6 }~~~~~~~~~~~~~~~~~~ Tb0N ALGORITIII FOR THE ’ ~~~cIuucal)~ p~~~~
(4 w L*.TFY PERIOD SCHEDULING PROBLFI1. f $ PERFORMING ORG. REPORT NUMBER

• AU THOR(S) I. CO NTRAC ~~ OR ORA NT NUMIER(.)

1~~~~J ~ L~
29

~~~
4
~79. PERFORMING ORGANIZATION NAME AND ADDRESS tO . PROGRAM ELEMENT . PROJECT . TA SK

AREA & WORK UNIT NUMBERS
M.I.T. Operations Research Center~77 Massachusetts Avenue -P--l4tGl---M-
Cambridge , MA 02139 __________________________

t t .  CONTRO LLING OFFICF NAME AND ADDRESS /~ ~~ E~~O~~~ ~~~~~
U.S. Army Research Office ~Jun~~~~78 I
P.O. Box 12211 ..

Research Triangle Park, NC 27709 236 pages .

•,
, 

~~~~~~gNITflRIM~~ Aa.c~4Cv NA ~IE & ADDRESS(II dllf.,anl f.’.*. ‘~ ‘.UraUin4 file.) *5. SECURIT ’V CL • #Ipo1~

~ 7~_~_~ _i~ 1 / ~/.Z~~i. ‘—M J
unclassified

-

~~ !~~~~~~~~~~~~~~~~~~~~~~~~~~~
IC

~~~~~~~~~~~WN~~~~~~~~ q

16. DISTRIBUTION S T A T E M E N T  (of thu Rap ar l)  
.

Releasable without limitation on ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I?. DISTRIBUTION STATEMENT (of ha ah.ft.cl .nt.r.dln Block 20. Ii dIlfa r.nt frmii R.p,,f)

* 5. SUPPLEMENTARY NOTES

r~~c~~ r~ ’~n ~ ~~~~~ 
) ~\j ~~ ~~~~C

—.

Li) rY  (~~~ L~~ u~c~:
*9. KEY WO RDS (Continua On r•vari• aid. ii iiiC...my ~ id ld.fltlfy by block na.b. ,)

Integer Progranining Shortest Path Problems
Lagrangean Techniques Network Flow Problems
Subgradient Optimization

20. AS$Jfi*C.T nilnu. or r.v .r.. aid. Ii n.c...my ~~,d Idant i fy  by block mimb.r)

‘ See page 2~ - . - - - - — - ____

DO 
~~~~~~~ 

1473 EDITION OF I NOV 81 II OBSOLETE Unclassified5/N O IO2 - 0 14 - 6 6 0 1
SICUmI TY CI.AUIPICATION OP ThIS PAOI (th in Data liitami~

_ _ _-_ _ _ _ _

.— ..——~~~~~~~~~~~———— ~~~~~ —— —.— — — ~~~~ —.~~~~~—
, — . ~~ .~~ . .,

_ _ _ _ _ _ _ _ _ _ _

A LAGRAN GEAN RELAXAT I ON ALGORITHM FOR THE
TWO DUTY PERIOD SCHEDULING PROBLEM

by

WILFRED B. SHEPARDSON

Technical Report No. 152

Work Supported , in Part , by
Contract DAAG29-76-C-0064 , U.S. Army Research Office

“Basic Studies in Combinatorial and Nondifferentiable Optimization”
M.I.T. OSP 84475

Operations Research Center
Massachusetts Institute of Technology

Cambr idge , Massachusetts 02139

June 1978

Reproduction in whole or in part is permitted for any purpose
of the United States Government .

______________________ — - - - — - - ~~~~~ -— ~~~~~~~
-

- , - -~~-~~~—-~~~~ — . — ~~~~~~~~~~~
.—

FOREWORD

The Operations Research Center at the Massachusetts Insti-

tute of Technology is an interdepartmental activity devoted to

graduate education and research in the field of operations re-

search. The work of the Center is supported , in part , by govern-

ment contracts and grants. The work reported herein was supported

(in part) by the U.S. Army Research Office under Contract

DAAG 29- 76-C -0064.

The author would also like to acknowledge the support of

the National Science Foundation under Grant MCS 77-07327.

ABSTRACT

An algorithm is presented for the two duty period schedul-

ing problem . This integer programming problem has a binary

constraint matrix with two sets of consecutive ones in each

column. At each subproblem of a branch and bound pr ocedure ,

subgradient optimization is used to maximize the value of a

Lagrangean relaxation , which is a network flow problem . The

algorithm is implemented for the two duty period set parti-

tioning problem , $iith shortest path relaxations. A second

algorithm utilizing the unique properties of prime numbers is

developed for solving small subproblems . Computational results

are reported for several large problems . .

2

~-- -~~~~~~~~~- --- -- --~~~~~~~~ - -—-.--— ——-

AC KNO V LE DG ?IEN IS

I wish to express my appreciation to Julie for her

devotion and support, and to Todd and Prett for being

VERY good.

I am especially grateful to Professor Roy E.

Marsten , who has guided me and assisted me in the work

that went into this thesis. I would also like to express

special thanks to Professor Thomas L. I l agnant i, who

directed the later stages oi the work and whose comments

and suggestions have been very valuable. I also

appreciate the participation of Professors Jeremy F.

Shapiro and Sanjoy K. Mitte r , both of vho~a we re on my

thesi s committee. I would also like to thank Professor

Timothy L. Shafte]. for- a series of fruitful discussions

on the He lsinki problem.

~~~~~~~
-
: 

~~~~~~~~

-- - --

~~~~rH
78 06 27 ‘~71

_____________________________ —.— -— — • -.- —~~~ --•~• -—-~—-- —••———~~~~~~~~~~~~~ —~ 
.
~~—•.-.~~ --— ~~~~~~~~~~~~~~~~~~~~~~~~~~ .— ~~~ .-—~— - . -



___  

----——- - _- - .-.—------- -- •-—--———.--- _ -- _ --..-_ -----_- 

-

a

TABL E OF CONTENTS

- page

Title Page...... . . . . .  . . . .  . . . .  . .•  .• . . . . . . . .. .  1

Abstract. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . 2

Acknowledge i~ents . . . . . . . . . . . . • . . 3

List of Figures. . . . . . . . .  . . . . . . . . . . . . . . . . . . . . 9

List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

F.
SECTION I Lagrangean Relaxation and the Two Duty

Period Scheduling Problem

Chapter 1 Introduction................... ....... 15

1.1 Knapsack Equivalents of Integer Programs..... 18

1.2 The Two Duty Period Scheduling Problem....... 24

1.2.1 Foriulation of the Two Duty Period

Scheduling Problea................. .......... 24

1.2.2 Interpretation and Applications of the

Two Duty Period Scheduling Prob].em........... 26

1.2.3 Solution Technigues...... ................... 31

1.3 Organization of the Paper.. ............. ..... 31

1.3.1 An Algorithm for the Helsinki Problem........ 31

1.3.2 Prime Numbers and the HELSINKI Algorithm..... 32

II

.- -- ------- - - - • --- ---- --~~~~.-- --— - ---_ — --. —------ --—  --—s -.-~~.---- - 



— — ~-~~~~ - 
—

~
_- — —---- ---- _—- —

~~~

U

- - - — — -

1.3.3 Side Constraints 33

1.3.4 Extensions, Discussion and Computational

Experience 34

Chapter 2 Special Structure of the Two Duty

Period Schedulir~g Probl€m 37

2.1 The One Duty Period Set Partitioning Problem. 38

2.2 Transforming the One Duty Period Set

Partitioning Problem to a Shortest Path

Problem.... 40
-

• 2.3 Transforming t h e General One Duty Period

Scheduling Proble m to a Net work Flow Problem . ~%L~

2 .4 R e fo rn iu l a t ing the Two Duty Period Set

Par t i t ioning Problem as a Shortest Pa th

Problem wi th Side Constraints 53

2.5 R e f o r m u l a t i n g the Gon~ ral Two Duty Period

Scheduling Problem as a Network Flow

Problem with Side Cons t ra in ts 59

2.6 Decoupling Columns in Mathematical

Programming to Obtain Equivalent Problems.. . . 64

2.7 A Solution Procedure f o r the Two Duty

Period Schedul irtg Problem 67
-•

5

_ _ _


~~~~
- . ..

~~~~~~~~ ---~~~~~
.,--_ - _~~~~~~~~~~~~ — - - ----~~~~~~~

-_-- -,---
~~~~

.- - .--
~~~
---- - _ ------— --

~~~
—- _ _ _

SECTION II Implementation

Chapter 3 The Helsinki Problem — The Relaxation. 71

3. 1 The Helsinki Problem as a Shortest Path

Problem with Coupled Arcs 72

3.2 Logical Elimination for the Helsinki Problem 76

3.3 An Algorithm for Solving the Helsinki

Problem 78

3• l4 The Branching Procedure ...... 82

3.5 Solving the Relaxation  . 84

3. 6 An Iterative Backward—Forward Algorith m

-~~ 

- for Solving the Shortest Path Relaxation..... 90

Chapter 4 Tightening the Relaxation 100

4.1 Subgra dient Optimization and the

Helsi nki Problem  . . . . . 100

4 .2  Interpret ing the Sub gra d ien t  Optimization

Ite ration for the Helsinki Problem. . . . . . . . . . .  106

14. 3 Choosing th e Target value ............. 108

4.4  Tree St ructure  - Bounding a Set of Nodes.. .. .  110

Chapter 5 A Role for  Prime Numbers  in Integer

Programming... 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 115

5.1 Reformulating an Integer Programming Problem

as a Single Constraint Problem............... 1166

— —_ - ~~~~~~~~~~~

1 .
5.2 A New Method for Reformulating an Integer

Programming Problem as a Knapsack Problem 117

5.3 Numeri cal. Considerations — Finite

Approximations to the Logarithms of Prime

Numbers 123

5.4 Induced Linear Orderings in Combinatorial

Problems.... 131

5.5 Applications to the Set Partitioning Problem 141

5.6 Applications to the Helsinki Problem 149

5.7 Applications to the Set Covering Problem 151

Chapter 6 The General Two Duty Period

Scheduling Problem 156

Chapter 7 Computational Experience........ 160

-
-

7 • 1 The Test Problems * . . . 1 60

7.2 Effectiveness of Logical Elimination in the

HELSINKI Algorithm..... 164

7.3 Results of the Subgradient Optimization

Procedure. a. 166

7. 14 Computat ion Times for Four Test Problems. 175

7.5 Results When Side Constraints are Included... 177

7.6 Decision Trees for the Four Test Problems.. . . 178

7.7 Results of the Prime Number — Shortest
—

Path Algori thm.. 180

- : 7

- ________________
— - -~_ _ - _—~~-

SECTION III Extensions and Discussion

Chapter 8 The Circular Ones Problem............. 185

8.1 The Circular Ones Problem.................... 186

8.2 The Circular Ones Set Partitioning Problem... 188

8.3 Shortest Path on a Circle 197

8. 14 Networks onaCirc le 199

Chapter 9 The K Duty Period Scheduling Problem .. 205

9.1 The K Duty Period Scheduling Problem 205

9.2 The Relaxation 209

9.3 Tightening the Relaxation 211

9.4 Interpreting the Subgradient Optimization

Iteration.... • 213
—

9.5 Summary... 217

Chapter 10 General Nethodology 219

10.1 Solution Procedure for the Two Duty Period

Scheduling Problem.... 219

10.2 Broader Applications of the Methodology

Developed to Solve the Two Duty Period

Scheduling Problem . . • • 221

Bib l iography 227
8

-

_
_ _

— -. _ -~~~~- — — - -- - _ _ _ _~~- - -_ ~~~~~- --— _-_ _ - --- - - -_ - - - - - - ----- - - - - - _ _ - - - - - _ _ _

LIST OF FIGURES

Figure page

• 1.1 An Example of the Two Duty Period Set

Par t i t ion ing Problem — The He lsinki Problem.. 27

1.2 An Example of the Circular Ones — Cyclical

S t a f f i n g Problem .. . 30

2.1 An Example of the One Du ty Period Set

Par t i t ion ing Problem (1HP) 39

2 .2 Graph of the One Du ty Period Set Par t i t ioning

Problem (1HP) of F igure 2.1 41

2.3 The 9 X 9 Trans format ion Mat r ix T9 43

2. 14 The One Duty Period Set Par t i t ion ing Problem

of Figure 2.1 Transformed to a Shortest Path

Proble m (1HP *) by the use of T9 45

2 .5 An Example of the General One Duty Period

Scheduling Problem (1P) . 47

2.6 The One Duty Period Scheduling Problem of

Figure 2.6 wi th Surplus Variables Added 48

9

—— --—~~~~~~~~~~~~~~~~~~~ —-_~~~ -,

- _ __________________________

2.7 The One Duty Period scheduling Problem of

Figure 2.6 with the Trivial Const ra in t 0 = 0

Appended • • . . . 50

2.8 The One Duty Period Schedulii~g Problem of

Figure 2.5 t ransformed by T9 to a Network

Flow Problem . . . 51

2.9 The Graph of the Network Flow Problem of

Figure 2.8 52

2.10 An Example of the Two Duty Period Set

Par t i t i on ing Problem 54

• 2.11 The Helsinki Problem of Figure 2.10 with

Decou pled Column s 56

2.12 Graph of the Helsinki Problem in Figure 2.10 57

2.13 Graph of the Helsinki Problem with Decoupled

Arcs g iven in Figure 2.1 1 58

2.14 An Example of the General Two Duty Period

Sc he d u 1 in g Problem 6 0

2.15 The Two Duty Period Schedul ing Problem of

Figure 2.14 with Decoupled Columns. . 62

2.16 The Two Du ty Perio d Schedul ing Problem of

Figure 2.14 Transformed to a Network Flow

Prob lem. . . • • • •. •. • . •... . • •~~~~~~••~~~~•• .. • 63

10 •

-

~

- - - -

~

3.1 An Example of the Helsinki Problem........... 73

3.2 The Helsinki Problem of Figure 3.1

Reformula ted with Decoupled Columns 75

3.3 Complete Search Tree for the Example in

Figure 3.2 •• U.S...... a...... 79

3.4 Graph of the Example given in Figure 3.2... .. 85

3.5 Preliminary Logical Elimination 86

3.6 Branch 1 Level 0...... 88

3.7 Branch 2 Level 0....... ~~~ 5 U S •~~~~~~ 89

3.8 Shortest Path Algorithms 91

3.9 Iterative i3ackward—Porward Reaching.......... 94

5.1 A Binary Search Tree for a 0—1 Integer

Programming Problem 134

5.2 The Binary Search Tree of Figure 5.1 where

the Height of a Node in the Tree Corresponds

to its Position in the Linear Order ing

Induced by ~~. • • • . • •5 • • . . . 135

5.3 An Example of Solving a 0— 1 Integer

Programming Prob’em wi th a Shortest Path

Interpretation of the Knifedge Formulation... 137

5.4 The Binary Search Tree for the 0—1 Integer

Programming Problem of Figure 5.3........ 139

11

5.5 The Decision Tree of Figure 5.4 where the

Height of a Node Indicates its Position in

the Linear Ordering Induced by P............. 140

7.1 Decision Tree Problem 1 57 X 551... 167

7.2 Decision Tree Problem 4 60 X 411........... 168

7.3 Number of Nodes Generated in Prime Number —

Shortest Path Subproblems....... 182

8.1 An Example of the Circular Ones — Cyclic

Staffing Problem. 187

8.2 An Example of the Circular Ones Set

Partitioning Problem . 193

8.3 The Circular Ones Example of Figure 8.2

with the First Cons t ra in t Repeated as

a Thi r teenth Cons t ra in t 194
8.4 The Circular Ones Example of Figure 8.3

-

Transformed by T13........................... 195

8.5 The Graph of the Circular Ones Problem

of Figure 8.4... 198
8.6 The Circular Ones Example of Figure 8.1

Transformed by Q 3
............................ 201

12

_ - _--~~ -_---- ~~------ ~~~~- ~~ - --~~~~ --~~~~~~~~-_- --- - -~~~~~~ - _ ---_ - --~~~~~~~~~~~~~~ -~~~ -

8.7 The Circular Ones Example of Figure 8.6

with the First Constraint Repeated as

a Thirteenth Constraint 202
8.8 The Circular Ones Example of Figure 8.6

Transformed by T13 203

9.1 An Example of the Circular Ones Problem

with Two Continuous Duty Periods for

Each Worker 207

10.1 An Exanpie of a Near Block Diagonal Problem

with Complicating Variables 222
10.2 A Problem wi th Staircase S t ruc tu re.. 224

10.3 A Near Block Diagonal Problem with

• Complicat ing Cons t r a in t s5 226

13

-

~~~ _ - _ ~~- - -~~~~~~- _ _ - - _ _ - - - _ _—~-~~~~~~~~ -~~--



~~~~~~~ - -- ~~~~~~~~~~~~~~~~~~ ——-~~~~~~~ ~~~~~~~~~~

LIST OF TABLES

Table page

7.1 Computational Data for the Pour Test

Problems 163

7.2 Percent of Variables Eliminated at each

Level of the DeCision Tree 165

7.3 Parameter Values for the Subgradient

Optimizat ion 174

7.14 Results with No Side Constraints, No Guess

but Optimum/Relaxation Ratio Given ... 176

7.5 Results with No Guess, No Optimum/Relaxation

Ratio but Side Constraint Included........... 179

7.6 Run Times for the HELSINKI Algorithm with

D i f f e r e n t Threshold Va lue s for Calling the

Prime Number — Shortest Path Subroutine...... 183

7.7 Results for the Prime Number — Shortest

Path Set Partitioning Algorithm.............. 184

14

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~- - - - - • ~ --~ - --~~

-~

PART I Lagrangean Relaxation and the Two Duty

Period Scheduling Problem

CHAPTER 1

INTRODUCTION

In recen t years we have wi tnessed considerable

advances in mathematical programming. One productive

area of concentration has concerned the use of

Lagrangean re laxat ion coupled with creative problem

formulation. Manifestations have included Held and

-Karp ’s (1970,1971) approach to the traveling salesman

problem , Fisher’s (1972,1973) stud y of resource

constrained machine sequencing, and applica tions to

multicoumodity flow problems (Assad (1976), Kennington

and Shalaby (1977)).

The notion of subgradients has also attracted a

great deal of research. Held and Karp (1970,1971) and

15

h~. ~~~~~~

- -

•- ~~~~~~~——- - - - -~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~ • -- -- ~~~-
-
--—~~~~~

_ _ _ _ _ _ — — - -

- —

Held, Wolfe and Crowder (1974) demonstra te its

application to the traveling salesman problem and the

multicoimodity maximum flow problem. Assad (1976) and

Kenn ington and Shalaby (1977) have used subgr adient

optimization for the minimal cost multicommodity flow

problem. Etcheberry (1976) has utilized the technique

in a new algorithm for set partitioning and set covering

problems. Cor~uejols, Fisher and Nenhauser (1977) have

used this solution strategy to solve facility location

models.

Another advaace in mathematical programming has

been the use of group theoretic and other knapsack

• equivalents of arbitrary integer programs. Fisher,

Northup and Shapiro (1975) report computational

experience with the group theoretic approack4. Garfinkel

and Nemhauser (1972) give an al ternative knapsack

equivalen t of an integer program. Glover (1967), I -

Shapiro and Wagner (1967) and Shapiro (1968) offer

methods for solving the knapsack problem in a dynamic

programming — shortest pa th context.

Another f r u i t f u l area for recent research has been

the combination of a lgor i thmic capabilities of

-
~~~~~~~~~~~ operations research and computer science. The use of

-16

- --

~

- -

~ -



F--- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

efficient list processing techniques from computer

science has in many cases led to order of magnitude

improvements in computational efficiency. Magnanti

(1976) and Magnanti and Golden (1978) survey many recent

instances.

In this thesis we em bellish upon all of these

developments in the context of certain personnel

scheduling problems. Our research has extended into

two main areas:

1) the stud y of e f f ic ien t d ynamic pro gr amm in g —

shortest path solution techniques for certain integer

programs. Par t of this inves t iga t ion has led to a new

method for tr a n s f o r m i n g integer programs in to equi valent

knapsack problems. Computational experience has shown

the ef fect iveness of these techniques for small set

par t i t ion ing problems.

2) the use of Lagrangean relaxation and subgradient

optimization for a certain class of personnel scheduling

problems. The two duty petiod set partitioning problem

we study has a natural shortest path relaxation. For

each suhproblem in a branch and bound strategy we use an

17

- _: - - - --- - —— ____________________________________

- .•

iterative backward—forward reaching shortest path

algorithm and subgradient optimization for computing

strong bounds. This approach is an outgrowth of an

observation by Veinott and Wagner (1962) that certain

very specialized scheduling problems can be solved

directly as shortest paths.

The remainder of this introductory chapter

outlines the problems to be studied and their

-
~

- applications. We first summa rize the methodology of our

knapsack transformation and its use withiL a dynamic

program m ing — shortest path f ramework and then

introduce the personnel scheduling problem. We conclude

the chapter with a more detailed suzamary of the

remainder of this work.

1. 1 Knapsack Equivale nts of Integer Programs

Consider any integer programming problem (IP) (with

St meaning subject to)

1

18

(IP) PUn CX

st ~~ A .X . = b

X in S

where A~ and b are in teger M—vectors in zM and where

5, a given subset of ~
N

, cap tures the discrete nature

charac teristics of the problem , e.g. S might be the set

Z~ of nonnegat ive integer N—vectors , the set of 0 , 1

integer vectors, or some other more complicated set.

Given a one—to—one linear m apping P f r o m the integer

N—vectors Z
M

into the rca]. numbers R , (IP) may be

r ewr i t t en as an equivalent p rob lem:

• (KIP) PUn CX

N
St ~~~P (A .) X . P (b)

j = l ~

X i n S

In Chapter 5 we study the knapsack problem (KU’)

defined by a napping P which utilizes the unique

19

~

::-

~

~~~~~~~~ ___________________________________ ________



_ _ _

properties of the prime numbers. Given any distinct

primes 
~~~~~~~~~~~~~~~~ 

the mapping P defined by

P: — > R

N
P (z) =

E
z1inI’~i=].

is a one—to—on e linear mapping of the integer

N—vectors into the real numbers. (KIP), derived with

this mapping P, is a knapsack prob le m with irrational

constraint coefficients. If the variables- are bounded

and the i r ra t ional coefficients P(A)) ,P (b) are closel y

enough approximated by rational numbers Ajc.b*, the

resulting proble m is equivalent to (KIP) and (IP) (see

Proposition 5. 1, Section 5.3 for a proof) .

A common solution s t ra tegy for solving these

knapsack equivalents of integer prog rams is dynamic

programming or shortest paths. A useful property for

this algorithmic approach is the property of optimal

subsolutions. For integer programming problems (IP)

with S = Z~~, any part ial solution X of an optimal

solution X* (i.e. ~ ~~. Xe) , X is optimal for the

resources i t uses. That is, X is optimal in

20

Mm CX

N N
-

st E A 3 X 3 E A 3 X~j=l j=l

NX in

This property is very use fu l when one considers the

knapsack reformu lation of (IP). The implication is,

when using dynamic programming — shortest path

techniques to solve (KU’), one may impose an arbitrary

ordering upon the variables of tne solution. Rather

than consider every variable as an arc at every node of

the shortest pa th in terpr etat ion of (KIP) , we need

consider only a subset of tue variables as arcs at

each node.

This property of optima l subsolutions depends upon

the problem having unbounded variables. However , for —

some 0,1 integer problems the upper bounds are enforced

na tu ra l ly by the constraints (wi thout explicit upper

bounds on variables) or by the objective func t ion . The

set par t i t ion ing problem is a case where the constraints

force each variable to be between zero and one.

Mul t ip le ch oice cons t ra in ts also have this proper ty .

21

---*-— -- - - - -_-— ;_—--- -- ----_ _~ -
_ _ _

The set covering problem with positive cost coeff icients

is an example where the objective function forces the

0 , 1 condi t ion.

In Chapter 5 we exploit the property of optimal

sub solutions in our development of algori thms ror the set

partitioning and set covering problems. We order the

variables according to the first row with a nonzero

entry. Consequently, for the set partitioning problem,

at a given node of the shortest path problem we need

consider only those variables whose first entry is in

the first constraint not yet satisfied. For the set

covering problem we need consider only those variables

with an entry in the first constraint not yet satisfied.

These ideas have a broader application. In the

case of a general integer programming problem (IP) with

unbounded variables and a sparse coefficient matrix,

there also is a good order ing of the variables. At each

node of the shortest path interpre tation of the knapsack

formulation of (IT’) oneneed consider only those

variabl es which will contribute to satisfying the first

constraint not satisfied at that node. In this way, at

22

~~~~~~~~~~ ‘~~~~~~~~~--~~~~~~~~~~~~~~~~-—- —-—~~ — - • - -  -—. - 
- - —-

~~~~~~~
-

~~—

each node one need consider only a small subset of the

arcs leaving that node.

In this paper we will apply these ideas to a

particular problem — the two duty period set

partitioning scheduling problem , which is a special cas e

of the class of K duty period scheduling problems. re

will first use duality to develop a relaxation for the

two duty period scheduling problem. This Lagrangean

rela x ation is an acyclic shortest path problem. We

suggest an iterative backward—forward reaching algorithm

for solvin g the relaxation. Subgradient optimization is

• used to maximize the Lagrangeari. The entire process is

embedded in a branch an d bound st rategy for solv in g the

scheduling problem optimally.

For subproblers with dimensions of manageable size,

we reformula te the subpro b lem as a knapsack pro blen

using the prime number mapping P. Because the original

• subprobl eiu is a set partitioning problem and has the

property of optima l subsolutions, the kn apsack

formu lation can be solved efficiently using a

predetermined ordering of the variables, as men tioned

earli er.

23

L - -
—

The computational results reported in Chapter 7

sho w that this solution s t ra tegy for the two du ty period

scheduling problem has led to significant improvements

in solution times over the best existing algorithms for

this class of problems.

1 . 2 The Two Duty Period Scheduling Problem

Personnel scheduling problems f r equen t ly give rise

t o integer p rogramming problems. We now in t roduce the
-

• two duty period scheduling problem , an integer

programming problem with special structure. A special

case of the two du ty period schedul ing problem arises

when the problem is a set partitioning problem. This

special case will be called the Helsinki problem .

1 . 2 . 1 Formulation of the Two Duty Period Scheduling

Problem -

A two duty period scheduling problem may be defined

as

-Ä

214

-

(P) PUn CX

st AX~~~~b

X Intege r and Nonnegative

where b is an N X 1 vector, C is a 1 X N vector, X is an

N X 1 vector and where the entries, a . . , of the H X N

constraint matr i x A are ei ther zero or one and each

column of 1~ has at most two segments of ones. A SEGMEN T

of ones is a consecutive set of column elements a. .,
1)

i = k,k+1 ,...,ksp— 1,k+p such that

a .. = 1 i = k,k+1 ,.b.,k+ p— 1 ,k+p

or ~~~ = —1 i = k ,k+1 ,...,k+p— 1,k+p

a
~~~

_ 1 ,3  = 0 if k > 1

ak+P+l,J = 0 if k+p  < III

The sym bol ~ in dica tes that  the constraints ma y

be eguali ties or ci ther less than or grea ter than

inequalit ies.

A special case of the two d u t y  period scheduling

problem which  wi l l  receive much at te z~tion in this work

is the Helsinki  problem or two  du ty  period set

pa r t i t i on ing  problem (H P )

• 25 

_ - ~-~~_



(HP) PUn CX - -

st A X 1

X = 0 , 1

where each column of A contains at most two segments of

ones, the rest of the entries being zero. The right

hand side elements are all ones. The notation X = 0,1

indicates that each entry of the vector X is either 0 or 1.

1.2.2 Interpretation and Applications of the Two

Duty Per iod Scheduling Problem

The two duty period scheduling problem arises very

n~ tural ly  in personnel schedul ing.  Consider a s i tuat ion

where there are a number of jobs each of which must be

done by a single person for  a given period of time. As

an i l lus t ra t ive  example we consider buses and drivers.

it was in this for m that the problem was first brought

to the author ’ s at tent ion by M arkk u  Tamminen of the

Helsinki Data Center, Finland [Koijonen & Tamminen

(1977) 3. Consider Figure 1.1 where rows 1 and 2

correspond to the two hours of operation of bus A and

rows 3 through 8 correspond to six hours of continuous

26

I-



• 6

Mm ~~~ C
J

X
Ji—i

Driver Schedules
X1 X2 X3 X4 X5 X6 RIIS

E s A  f 8am — 9am 1 0 1 1 0 0 1
U 

~~9 ain— ]0 am 0 0 1 1 0 0 1
9 a m — l O am 0 1 0 0 1 0 — 1

lO a m — h a m  0 1 0 0 1 0 = 1
ll a i n — 1 2 m 0 1  1 0 0 1 = 1Bus B 1 2 m — l p m  1 0 1  1 0 1 — 1
l pm — 2 pm 1 0 0  1 1 0 1
2 p m —  3 p m  0 1 0 0 1 0 — 1

• 
X~ 0,1 j — 1,2,3,4,5,6

An Example of the Two Duty Period Set Partitioning Problem

The Helsinki Problem

Figure 1.1

27



operation of Pus B. Each column corresponds to a

possible driver schedule where an entry of 1 in the

matrix indicates that the driver of that column drives

the bus of that row for the hour corresponding to that

row. With the restriction that a driver drive no more

than one bus dur ing  his morning duty period and no more

than one (possibly different) bus during his afternoon

du ty  period , each column will contain at most two

segments.  The problem is to f ind  a set of minimal cost

of driver schedules such that  each bus will have exactly

one driver dur ing  each of its hours  of operation .

Other cases of two du ty  period scheduling problems

which  have been cited in the l i te ra ture  include cyclic

s t a f f i n g  with overt ime ( bartholdi , Orl in & Ra t l i f f

(1977) 3 and days off scheduling (Brownell & Lowerre

(1976), Ti brewala , Philippe & Browne (1972), Bartholdi ,

O rlin & Ra t l i f f  (1977) , B arthold i & Ratli f f  (1977 ) ,

Orlin (1977) 3. Glover and Mulvey (1976) refer to

implementat ions of projec t par t i t ioning ,  job processing,

and monitor ing and maintenance scheduling problems.

Other authors who have studied very similar problems

inc lude  Baker (1974 , 1975) , M aie r — Rothe  (1973) , and

Segal (197 1$) .

28

1~~

- 

_____________



~

A special case of the two duty period scheduling

problem is the circular ones and cyclic staffing

problem. This is a problem of scheduling personnel

working continuous d u t y  periods in cyclic time. See

Figure 1.2. Each column repre sents a possible work

schedule of one continuous d u t y  period in real time.

However , due to the a rb i t ra ry  na ture  of starting a day

at midnight in the matrix representation, a duty period

beginning late one day and finishing early the next

becomes two segments in the corresponding column.

Ef f ic ien t  solution procedures are known for  certain

cases of this problem (Orlin , Bartholdi & Ratliff

(1977) ] .

The two duty period scheduling problem can be

generalized to a K duty  period scheduling problem where

each column of the const raint  m a t r ix  contains at most K

segments.  For example , the problem of scheduling

personnel who work five continuous duty periods in a

week might be formulated as a f ive  d u t y  period

scheduling problem in linear time or as a six duty

period scheduling problem in cyclic time.

29

4



-~~

7

Mm ~~
X1 X2 X3 X4 X5 X6 X7 RHS

l2 p m — 2 a m  0 0 1  1 0 1 0 — 3
2 a i n — 4 a m  0 1 1  1 0 0 0 — 2
4 a m — 6 a m  0 1  1 0 0 0 0 — 1
6 a m — 8 a m  0 1  1 0 0 0 0 — 1
8 a m — l O am 0 1 0 0 1 0 0 — 2
lO am — 1 2 m 0 1 0 0 1 0 0 — 1
1 2 m — 2 p m  0 0 0 0 1 0 1 — 2
2 pm— 4pm 0 0 0 0 1 0 1 1
4 p m — 6 p z n  1 0 0 0 0 0 1 — 1
6 p m — B p m  1 0 0 0 0 0 1 — 1: 8 p m — l O pm 1 0 1 0 0 0 0 — 1

J O p m — l 2 pm 1 0 1 1 0 0 0 2

X~ Nonnegative, Integer j

An Example of the Circular Ones — Cyclical Staffing Problem

Fig~~e 1 2



F- 
- - -

~~~~~~
-
~ - -

--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - 

______________

1.2.3 Solution Techniques

The simplest of this class of problems , the one

du ty  period scheduling problem , is known to have a

unimodular matrix (Veinott & Wagner (1962), Garfinkel &

Ne ahauser  (1972) ]. In Chapter 2 we will demonstrate how

it may be easily reformulated as a network flow problem.

The general two duty period scheduling problem (P)

is a general integer programming problem. As such it

can be solved by a number of techniques — cutting plane,

enumeration, or group theoretic. However, no good

specialized algorithms have been developed which might

solve the two duty period problem in better times than

might be expected from a general integer programming

code.

1.3 Organizat ion of the Paper

1.3.1 An Algorithm for the Helsinki Problem

In Chapter 2 we will indicate how we can take

advantage of the special structure of the two duty

31 - 

- --_~~~~~~~~~~~~~~~ - _ -
~~
-----

~~~~~~~~~~~~~~~



~~~~ ------ ----- 

period scheduling problem to develop an algorithm for

solving it efficiently. In Chapter 3 we will develop

this algorithm in great detail for the special case, the

Helsinki problem. We will develop a branch and bound

enu meration technique , in which the relaxation solved

for each subproblem will be-a shortest path problem.

In Chap ter 4 we introduce the Lagrangean relaxation

of the Helsinki problem in order to get tighter bounds

for our branch and bound procedure. To evaluate the

Lagrangean , we nc9d only solve a shortest path problem.

When subgradient optimization is used to maximize the

Lagrangean , the extra computational burden is more than

offset by the reduction in the number of subprobleras

generated.

1.3.2 Prime Numbers and the HELSINKI Algorithm

In Chapter 5 we demonstrate how prime numbers can

be used to reformula te  any integer programming  problem

as a knapsack problem. Interpreting this knapsack is

problem as a shortest path problem , leads to a very

~~~~, 

32

- ~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

efficient solution procedure whenever the ori ginal

integer pro gramming problem is a set partitioning

problem. The existence of this efficient solution

technique depends on the use of logarithms of primes as

multipliers in obtaining a surroga te constraint for the

— origina l constrain ts. A somewhat less efficient

algorithm is developed for solving the resulting

shortest path problem when the origina l problem is a set

covering problem .

The prime num ber — shortest path method is severely

limited in the size of problem it can handle. However,

we have incorporated it in to the HEL SINKI algorithm to

be used when the subprobleui to be solved is of small

enough dimensions. Used in this way , the prime number -

shortest pa th technique is guaran teed to fa thom a node

w hen used. ~e found it to be very effective in

eliminating the need to separate nodes at the lower

levels of the tree search.

1.3.3 Side Constraints

In Chapters 5 and 7 we develop two procedures by

which side constraints of the form

33

~
—

~ -w- _--
~

-
~~~~~

- -—--- —-~~
---

~~
- -- -

~~ 
_ - - -  

~~
- _
~~~~~~ —------- --—-——~~~~~~~~~

N
~~

t . X .~~~ T t) ~~0
j=1. ~~~

can be incorporated into the HELSINKI algorithm.

Computational experience with the constraint

N

E
X . < K

j =i

limiting the number of variables in the solution ,

indicates that the side constraints tend to slow the

algor i thm slightly. However , in some cases ,

par t icular ly where the constra int cannot be easily

satisfied , its effect is to significantly increase the

speed of the algorithm.

1.3. 4 Extensions , Di scussion and Computational

Experience

Chapter 6 generalizes the results of the previous

chapters to the genera l two d u t y period scheduling

problem (P) . We sh ow that the relaxation is a network

I
_ _ _ _ _ _ _ _ _ _

S

flow problem. Again , an enumerative procedure can be

used to solve the general two duty period scheduling

problem. Subgradient optimization is used to maximize

the Lagrangea n relaxation of (P) at each subproblem.

Our computational experience wit h the HELSINKI

algorithm is presented in Chapter 7. Our algorithm has

been tested on fou r real world probles of average size

65 x 475 (as well as on a number of small test pro blems

artificially generated) . Since the Helsinki problem is

a set par ti t ioning problem , specialized algorithms have

been developed for solving it quite efficiently.

However , the HELSINKI algorithm consistently

outperformed Nars ten ’s SETPAR set partitioning algorithm

(~1arsten (1971)], generally regarded a~ the best

available set partitioning algorithm. Tests done by

Tamminen on one test problem with a number of set

partitioning algorithms (including the Garfinkel &

N emb auser a lgor i thm) led that investigator to conclude

that SETPAR outperformed all others (the HELSINKI

algorithm was not developed at that time) (~~oljonen &

Tamm inen (1977) 3. -

35 •

_ _k _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

Chapter 8 deals with a special case of the two duty

period scheduling problem , the circular ones problem.

This is a scheduling problem in cyclic time.

The results of the earlier chapters are generalized

for the K du ty period scheduling problem in Chapter 9.

This K duty period problem correspond s to an integer

program with at most K segm ents of ones in each column ,

other entries being zero. ye show that the same

theoretical development applies.

Finally, in the last chapt er, we examine the

general methodology used in developing the HELSINKI

algor ithm . The idea of decoupling columns , which is

used to reformulate the Helsinki problem as a shortest

path problem with side constraints, is sh own to be

applicable to near block diagonal matrices. There also

exists a corresponding concept of decoupling rows.

36

_ _ _ _ _ _ _ - _ _--- --~~~—-- -~~~~~ ----- _~~~~ -- — - - —-- —-—-- ---,----- ----~ --------- --—- -‘I

CHAPTER 2

SPECIAL STR UCTURE OF THE TW O DUTY PERI OD SCHED ULIN G

PP OBL EN

In th i s cha pte r we will develop a metnodology for

solving the two duty period scheduling problem. Ve will

consider first the one duty period scheduling problem

and show how i t m a y be t r a n s f o r m e d to a network flow

problem. Then in Sections 2.~ and 2.5 we will show how

the two du ty period scheduling proble m may be

re formula ted as a one duty period pro bl em with side

constraints. Equivalently, the two du ty period pro blem

may be reformula ted as a network f low problem with si de

constraints.
/

37 -

-- — - - - -

I

2.1 The One Duty Period Set Partitioning Problem

The one duty period set partitioning problem m ay be

defined as

(1HP) Mm C X-

st A X = 1

X = O ’,1

where the entries of the N X N constraint matrix A are

ei ther zero or one and each column ~~~ j = 1, ... , N ,

contains at most one segment of ones. A SEGNENT S of

is defined to be a subset of rows, S = (p,p+1 ,...,p+k),

such that a . . = 1 for all i in S (or ~~~ = — 1 for all i

in S) and a~ _ 1 ,~ = 0 if P ,~ 1 and a
1~~~41 ,~

= 0 if p+k ~‘

N .

A n example is given in Figure 2.1.

-~

38

F- —-------
~~~~~~~

--—
~~~
——- —-

~
------- -_ _- - - _-- --- — _______ ___

11
Miii E c~x~

i— i

8t X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

1 0 0 0 1 0 1 0 0 0 0 1
0 0 0 0 1 0 1 0 0 0 0 — 1
0 0 1 0 0 0 0 0 1 0 0 — 1
0 0 1 0 0 0 0 0 1 0 0 = 1
0 0 1 0 0 1 0 0 0 0 1 = 1
0 1 0 0 0 1 0 1 0 0 1 — 1
0 1 0 0 0 0 0 1 0 1 0 — 1
0 0 0 1 0 0 0 0 0 1 0 = 1

X~ — 0,1 j — 1,2,...,11

Mi Exam ple of the One Duty Period Set Partitioning Problem (1HP)

Figure 2.1

39

~
—

~
- - -

~
—

~
-- —~~~~~

- -
~~~~~~~~-~ -- --

~~~~~-- - -~~~~~~~~ 
-- - - - - - - -

~~~~~~~~~~~~ 
- -

~~~
-
~~~~~~~-w—~~~~~~

-

2.2 Transforming the One Duty Period Set Partitioning

Problem to a Shortest Path problem

The one du ty period set partitioning problem is

known to have a unimodula r constraint matrix A

[Garfinkel & Nenhauser (1972) , V einott & Wagner (1962) ).

It f ollows tha t  the one du ty  period set par t i t ioning

prob lem can be represe nted a s a shor test pa th pro blem

with (11+1) nodes and N arcs. The set partitioning

pro blem is to choo se a set of columns tha t together

cover every row exactly once. Consider a segment S

covering rows p through p+k. This may be represented by

an arc or ig ina t ing  at node p and termina ting at nod e

p+k+ 1. See Figure 2.2. Then each fe~asible solution to

th e one du ty  period set pa r t i t i on ing  problem will

correspond to a path f rom node 1 to node N i l .

Ea ch arc of this shortest path interpretat ion of

the one duty period set partitioning problern is directed

in the sense of originating at the lowest row number in

the segment to which it corresponds. Consequently, the

graph is acyclic.

40  

—----- -------— - --~ -~~~~---~-- - - - - - -- - —— - -- 



- -~~-— - - - - - -~~~~~~~~~~~~~~ -- - - - ~~~~~~~ - -- - - -  -.- ~— ~~~~~~~~~~~~~~~~~~~~~ - - ---~~~~~~~~~~~ - - - --

-I

N

_1J

~

_

~ 

-~~~~~~~~~~~~~ -~~~~~ - - -~~~~~ 

T 
~



Consider the following transformations on the N X N

constraint matrix a of (1HP). First append the trivial

constraint

0 = 0

giving the (N i l) I N constraint matr ix ( A ’ lb ] .  Let

T= ( t~~~)

be the (nil) x (M+l) matrix such that

~~ = 1, i = 1,...,11+ 1

~~~~~~~~~ = —1 , i = 2 ,...,N+ 1

= 0, otherwise

See Figure 2.3. T simply subtracts from each row of A ’
(except the first) the preceding row. Since T is

nonsingular the constraint set (TA’ITb] is equivalent to

[A~ 1]. The effect of tne transformation has been to

create an equivalent problem (1HP*)

L 42

—-- - - -

~

-— ~~~~~~~ -- - -— - --

1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 —1 1 0 0 0 0 0 0
0 0 —1 1 0 0 0 0 0

T9 — 0 0 0 — 1 1 0 0 0 0
0 0 0 0 —1 1 0 0 0
0 0 0 0 0 —1 1 0 0
O 0 0 0 0 0 —1 1 0
O 0 0 0 0 0 0 —1 1

The 9 I 9 Transformation Matrix Tg

Figure 2.3

43

- - -~~~~

(1HP*) Mm CX

St TA ’X = Ti

I Integer, Nonnegative

where ea ch column of (TA ’) contains exactly one 1 and

one —1 , the rest of the entries being zero. See Figure

2.4. In other words TA’X = Ti represents a shortest

path problem.

2.3 Transforming the General One Duty Period Scheduling

Problem to a Network Flow Problem

-I

Consider now the more general one duty period

scheduling problem.

(1?) Miii CX

st AX~~ b

X Integer , Nonnegative

where , once again, each column of A contains exactly one

segment of ones, the rest of the entries being zero.

44

I

_ _ _ _ _ _ _ _

-
_ _ _ _

t ~~~~~~~~~~~~~~~~ — --~~~~~~~ - - - - - - -- -—~~~~ - - - —~~~ —_--- - - —--~~~ -- --— --~~~~~-~~~~~~~~~~~~~ -— - -- - --~~~~~~~~~~--~~~~~ - - -~~~~

_ _ _ _ _ _ _

_____ ___ ___

Mm
i—i

at X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 RUS

1 0 0 0 1 0 1 0 0 0 0 1
— 1 0 0 0 0 0 0 0 0 0 0 — 0

0 0 1 0— 1 0 — 1 0 1 0 0— 0

0 0 0 0 0 0 0 0 0 0 0— 0

0 0 0 0 0 1 0 0 —1 0 1 — 0
0 1 —1 0 0 0 0 1 0 0 0 — 0
0 0 0 0 0 —i 0 0 0 1 —1 — 0
0 — 1 0 1 0 0 0— 1 0 0 0— 0

0 0 0 — 1 0 0 0 0 0 — 1 0 — — i

— 0,1 j — i,2,...,ii

The One Duty Period Set Partitioning Problem (HIP) of Figure 2.1

Transformed to a Shortest Path Problem (1HP*) by the use of T9.

Figure 2.4

45

_________________ -~~~~~~~

~ -~ -~ ---- - -_—~~-- -- ~~~~~~~~~~~~~—- -~~~~~~~~ -- -- -- ~~- - - - - - - - --—- - --~~~~~~~ --~~~~- -~~~~~ - - - ~~ ~~~-

See the example in Figure 2.5. Then (12) can be

transformed to

(12) Miii CX

St AX — Vt = b

I Integer, Nonnegative

by the addition of surplus variables I. See the example

in Figure 2.6. Notice that (12) still satisfies the

criterion that each column have exactly one segment. It

is also the case for less than or equal to inequalities,

AX ~ b, that the addition of slack variables will lead

to a reformulation satisfying the criterion that each

column have exactly one segment.

In the same manner that (1HP) was transformed to an

acyclic shortest path problem , (1?) may be transformed

to a network flow problem.

Consider the example given in Figure 2.6. Adding

the trivial row

0 = 0

‘

46

_— - - -
-
~~

- - — _ — — - -
~~~

- --- - - - - -----
~~~~

- - - -

~ —--~ -~~~~~~~~ -~~~—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

11
I1in E c~x~

i—i

at X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 RRS

1 0 0 0 1 0 1 0 0 0 0 ~ 3
0 0 0 0 1 0 1 0 0 0 0 ~ 5
0 0 1 0 0 0 0 0 1 0 0 ~ 4
0 0 1 0 0 0 0 0 1 0 0 ~ 7
0 0 1 0 0 1 0 0 0 0 1 ~ 6
0 1 0 0 0 1 0 1 0 0 1 ~ 4
0 1 0 0 0 0 0 1 0 1 0 ~ 8
0 0 0 1 0 0 0 0 0 1 0 ~ 4

X~ Nonnegative,
Integer j — 1,2 , . . ., i1

An Example of the General -One Duty Period Scheduling Problem (1P)

Figure 2.5

47

-

.

i
i

tr~ v~, ~~ N. ‘0 ‘~~

—

u l u l l u u l
to

~.4 000 0 0 0 0 . - 4
I 0

u

>~ 0 0 0 0 00 _ 0 .
~~I 4~

‘0
a

~4 0 0 0 0 0 . -t OO —
I a

V.1
a

~~ 0 000 . - t 0 0 0

~~4 0 0 0. - t0 00 0

cv~
-

~~~ 
0 0. - t 0 0 00 0

I a

N
>~ 0 .4 0 0 0 00 0  ~— Vi U

-4 
-4 to

D4 — t 0 0 0 0 0 0 0

— 
I •

— 
• ‘.0

K 0000. - 4 .- s O O  c’i at,
o —

K 0 0 0 0 0 0- 4 - 4  
W

0~. ~ to

K 0 0-4 -4 00 0 0

0

K 0 0 0 0— 4 .— t O O

00
K
: 

~~~~~~~~~~~~~~~~~~~ .
~~

K 0 0 0 0 0 00 -.

,-, g o
K K OO.-4 -i-a 0 0 0 Z
U— — N

K 00 0 0 0.-4— 0
-

—
p4

14 - 40 0 00 0 0 0
1J

a

- 1

48

f~ _ _ _ _ _ _ _

-
.
_ _

_ _ _ _ _ _ _ _
~

_ _ _ - - •- - -____
~~~-~~~~~~~~~~~~~~~~~~~~~~~~ -



-- ~
-- - - - - - -

~~~~~~~~~~~~~~~~~~
- - - - - - —-—

~~~~
-- - - -  

gives the matrix in Figure 2.7. Then, after applying

the transformation T, one gets the resulting matrix

depicted in Figure 2.8. Our one duty period scheduling

problem has been transformed to a network flow problem.

In the one duty period set partitioning problem

(1HP) one unit of flow is to pass through a path from

node 1 to node Nil. In the more general problem (12) we

mus t have b~ units of flow passing through each node i.

Consequen tly, at each node we may have to introduce or

withdraw units of flow. Precisely, we mus t in tro duce

(or withdraw) b1 
— b1 1  uni ts of flow at node i, wher e

b0 0. Now , we mus t add a source (Node 0) as well as a

sink (Node N + 2) . See Figure 2.9, whe re arcs

originating at node 0 introduce flow to nodes and arcs

ending at node 10 withdraw flow from nodes. If the

constraints of (12) had all been equations or less than

or equal to inequalities, then the corresponding network
- 

- 
flow representation would have been acyclic. As it is,

each variable becomes an arc from node i + 1 to

node i.

________ I



__ 
— -~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~-—- ~~- -

Vi
U$ ~~ N. % O - ~ 00 -~ 0

• u u u u u u u u  0
CO I

>4 00 0 0 0 0 0. 4 0

N.
>4 0 0 0 0 0 0-j I O O

‘0 to
>4 0 0 0 0 0.4 0 0 0  14

I 
a

In
>4 0 0 0 0.4 00 0 0  0

‘-4
>~ 0 0 0-4 0 0 0 0 0

.1-I

>4 00..j 4 00 0 00 0

C-.-’ 41
>4 0 - 4 0 0 0 0 0 0 0  .~~I — U

‘-4
—

>4 . - a0 0 0 0 00 0 0  • i-s
I •

— .
.4

K 000 0. —’ --~~0 0 0  c-i ‘0
0 -.
.4

K 0 0 0 0 0 0— ’ — O  u
‘I-, ~ ‘0 C”I

00 4)
K 0 0— —0 0 0 0 0  ‘0

4)
‘I-t o,

00 0 0 0 — l O 0  0 0. 00
14 -~~ -4
a a

N. 00 4)
K ‘-4 ‘ - 40 0 0 0 0 0 0  4) p-I

U
0

‘0 1-4 Ii
K 0 0 0 0— — 00 0  p4

00
In

K .-4 . - 4 0 00 00 0 0  -4 -.4

-
~~ 00 ‘0K 0 0 0 0 0 0 0. 40  w 

- 
-

U
o Vi

K 14 0 0— — —0 0 0 0  z
• C-i .1-I

K o oo o o -. — o o  1<

K . 40 0 0 0 0 0 0 0  >.
U

21 a

L 

50

_ _ _ _ _ _ _ _ _  _ _ _  - _ ~~~~~ -~~~



—~~~~~~ - — - —

‘I)X -. C’.1 -4 c-i ’~~~~~~-+
I I I  I I

u u I u u I I I u
‘-I

CO f~.>4 0 00 0 0 0 0 . - .-a
$4

N. 0
>4 00 0 0 0 0-4 -4 0

‘0 Z
>4 0 0 0 0 0_ _ 0 0

I to
In 0

>4 0 000 . a - I0 0 0

-* I-.
1~ 0 0 0- 4 — 0 0 0 0

I >-.
•0

>4 00’-4 .- 4000 00  ‘0

N
>4 O -.4 . - 4000000  0

I — ‘I-i
-4p-I

>4 -.. - a0 0 0000 0  • to
I • $4

— • 1-4
.4 *K 000 0. - a O - 4 0 0  at,

0 — c-i
-4

K 0 0 0 0 0 0 — 0 — ii 4) 00
I 14

• 0’ 
-I-, c-i

K 0 0— 0 — 0  0 0 0  p-4
I ~ t .0 CI

0 It
CO 14K 0 oO O O~~4 O . 4 o  0 p4 00

• I $4 r4
a a

. . 0_ 0 0 0 00 0
I U .0

0
• ‘0 14

14 O O O O O.~i OO  
.

4) 00
In

K ‘4 0 .- t 0 0 0 0 00  r1
I i-s

a
00 ‘0K 0000000. - i .4 4) 4)

U
0

K K 0 0- 4 0 0— 0 0 0  Z
I ‘0

14~ o o oo o _ a o . to  
14”~ 

.2

14 — . -t 0 0 0 0 0 0 0
I U

4)

U a
a

51



r - - - - - - - -

~~~~

-_

~

-

~~~~~~~~~~~ 

-4

/ 0’

I 
.
~I 00 .2

I >4 ‘44

I K ‘I-I1 0 0
II K U

I C--I
F-. 0

.4 >4

00 4)



- -  •- —--_~~ -- -~~~~~~~~~ - - -  -~~--- - - - --- ------ -— - -

2.4 Reformulating the Two Duty Period Set Partitioning

Problem as a Shortest Path Problem with Side

Constrain ts

Consider now the two duty period set partitioning

problem which we will call the Helsinki problem (HP)

(HP) Mm CX

St AX = 1

X = 0,1

where each column of A contains one or two segments oi

ones , the rest of the entries being zero. An example is

given in Figure 2.10. This example corresponds to the

bus driv er example given in Figure 1.1 in Chapter 1.

(HP) and the example in Figure 2.10 are both set

partitioning problems. However , both have the special

property of having at most two segments in each column.

We know that the one duty period set partitioning

problem is easily solved. What implications does this

have for the two duty period set partitioning problem?

The shortest path interpretation of the single segment

• set partitioning problem suggests a na tu ra l  re laxat ion

for the two  segment  problem.

53 •

______ _________ —-— — - -  — ------- —--~~
-
~
----



_ _  _ _  ——------ -

Mm
i—i

at X1 X2 X3 X4 X~ X6 RHS

1 0 1  1 0 0  = 1
0 0 1 1 0 0 — 1
0 1  0 0  1 0 —  1

0 1 0 0 1  1 — 1

0 1 1 0 0 1 — 1
1 0 1  1 0 1  1
1 0 0 1  1 0 — 1

0 1 0 0 1 0— 1

x
~ 

— 0,1 j — 1 , 2 , . . . , 6

An Example of the Two Duty Period Set Partitioning Problem

Figure 2.10

54

- ~T~ I1.IITT _ _
_ _~

___ I__ __ _



_ _ _ _ _  
_ _ _ _ _ _ _  -~~~~~~~~~~~~~~~~~ _ -- - - - 

I
Consider again the Helsinki problem example in

Figure 2. 10. Suppose each column A~ containing two

segments were separated into two columns, A~ and A 2,

each containing one segment, see Figure 2.11. The

matrix in Figure 2.11 corresponds exactly to that of

Figure 2.1.

In terms of our shortest path interpretation , each

variable of the original problem corresponds to two

arcs, an d X~ , (see Figure 2.12). Dividing the

columns decouples the arcs (see Figure 2.13). If we

impose the constraints that each arc must have the same

value as its partner (i.e. X~ = X~, j 1,...,N) then

• our new problem ( H P ’ )  is equivalent to the original

problem. Proposition 2.1 formalizes this idea in

Section 2.6.

(HP’) Nm C~ X 1 + C2 X2

st A 1 X 1 + A
2

X
2 

= 1

IX~ — 1X 2 0

X1 ,X2 = 0 , 1

1 2where C + C  =C .



-~~~~~~~- - ~~~ ~~~~~~~~~~ —-~~~~--------‘ -- ~~ - - ----—--—— -~~-- —-

6

Mm ~~~~~ +
i—i i—i

x1 x2 x4 x5
at X~ X~ X~ X~ X~ X~ X~ X~ X~ X~ X~ RHS

1 0 0 0 1 0 1 0 0 0 0— 1

0 0 0 0 1 0 1 0 0 0 0— 1

0 0 1 0 0 0 0 0 1 0 0— 1

0 0 1 0 0 0 0 0 1 0 0— 1

0 0 1 0 0 1 0 0 0 0 1 —  1
0 1 0 0 0 1 0 1 0 0 1 — 1
0 1 0 0 0 0 0 1 0 1 0 —  1
0 0 0 1 0 0 0 0 0 1 0 —  1

J 
— 3 = 1,2,. •,5

X~ — 0,1 j — 1,2,.. .,6

X~ — 0,1 j 1,2,...,5

where C,~ + C~ ~ 3 = 1,2 , . .. , 5

The Helsinki Problem of Figure 2.10 with Decoupled Columns

Figure 2.11

56

L. - - - 
_ _ _ _ _ _ _ _ _ _ _  - -



- -~ -- _ -~~~ --

0’

p
c-i
K

CO

— N. -.1
K K

‘0 ‘0K K
(—-I

41
Ii C~-J• —4
00

c-i

In 4)‘p., II
• 00

CI -4
>4

c-i ‘.4

_  _i~
_ 

-~~~~~~~~ -~~~~~~~-



- — ---- - -- ~~- —_-- _ - -  —- -- -r-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -—--—----_-- -——--

0’

c-_i
K

00

C-I-I
K N. K

‘-4
-4

c--I

w

58 

¼

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


That is, the Helsinki problem is equivalent to an

acyclic shortest path problem with couple d arcs.

Similarly, it can be show n that the more general two

duty period scheduling problem is equivalent to a

network flow problem with coupled arcs.

2.5 Refornula ting the General Two Duty Period

Scheduling Problem as a Network Flow Problem with

Side Cons t ra in ts

Consider now the general two duty period scheduling

problem (2) (see Figure 2. 114)

(2) Mm CX

st AX~~~b

X In teger , Nonnega tive

H where each column of A contains at most two segments of

ones, other entries being zero. Inequal i t ies in the

original constraints may be transformed to equations by

the use of surplus and slack variables.

59

~ - ---— ~~~~~~~~ — ----—-- - -—— -—-— -~~-- --~

Miii ±CJ
X
3

at X1 X2 X3 X4 X5 X6 RRS

1 0 1 1 0 0 = 3
0 0 1 1 0 0 — 5
0 1 0 0 1 0 = 4

0 1 0 0 1 1 — 7

0 1 1 0 0 1 — 6
1 0 1 1 0 1— 4

1 0 0 1 1 0 — 8
0 1 0 0 1 0 — 4

X
3
Nonnegative, Integer 3 = 1,2,... ,6

An Example of the General Two Duty Period Scheduling Problem

Figure 2.14

- -- -- - _ - i_
~

_
--------- “

Replace each variable X . with two variables X~ and

x 2. Partition the non—zero entries of the A matrix into
)

two ma trices A 1 and A2 where A~ represents the first H

segments of the variables and A 2 represents the second

segments (where they exist). A = A~ + &2. Divide the

costs C into C1 and C2 where C = C1 + C2. The new

problem t hen is given by (P’) (see Figure 2.15)

(P’) Miii C1X 1 + c2x 2

at A 1X1 + A 2X2 = b

-
x 1 ,x 2 Integer , Nonnega tive

wh ere C1 + C 2 C

To the constraints (A ’IA 2lb], appen d the trivial

constrain t

0 = 0

to get a new constraint matrix (A 1 ’(A2’Ib’]. Then apply

transformation T to get [TA 1’ JTA 2’ ITb’). See Figure

2.16. Then [TA 1’ TA 2’ ~Tb’] can be in terpreted as a

network f low problem. And our re formula t ion of (2)

61

I— —--- -_—~~~~---- -__ -- --—- ---_ - - -—~~-~~~~-------- - - - - - - ---

- - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - - ~
_ _ _ . _ _ - -

6 5
Miii E c~x~ + ~~~~~ c~x~

i—i 3—1

St xf x~ x~ X~ X~ X~ x) X~~ X~ X~ X~ RILS

1 0 0 0 1 0 1 0 0 0 0 — 3
0 0 0 0 1 0 1 0 0 0 0 — 5
0 0 1 0 0 0 0 0 1 0 0 — 4
0 0 1 0 0 0 0 0 1 0 0 — 7
0 0 1 0 0 1 0 0 0 0 1 — 6
0 1 0 0 0 1 0 1 0 0 1 — 4
0 1 0 0 0 0 0 1 0 1 0 — 8

-
• 0 0 0 1 0 0 0 0 0 1 0 — 4

= X~ j — l ,2 ,..., 5

Nonnegative, Integer 3 — 1,2,...,6

Nonnegative, Integer 3

The Two Duty Period Scheduling Problem of Figure 2.14 with

Decoupled Columns

Figure 2.15

62

- j

--- _~~~~ --~~~~~~~~-

6 5
Miii

~~
C~X + ~~~~ C~X~

3—1 3—1

at X~ X~ X~ X~ X~ X~ x) X~ X~ X~ X~ RIIS

1 0 0 0 1 0 1 0 0 0 0 — 3
— 1 0 0 0 0 0 0 0 0 0 0 — 2
0 0 1 0 — 1 0 — 1 0 1 0 0 — — 1
0 0 0 0 0 0 0 0 0 0 0 = 3
0 0 0 0 0 1 0 0— 1 0 1 — — 1

0 1 — 1 0 0 0 0 1 0 0 0 — — 2
0 0 0 0 0 — 1 0 0 0 1 — 1 — 4
0 — 1 0 1 0 0 0 — 1 0 0 0 = — 4
0 0 0 — 1 0 0 0 0 0 — 1 0 — — 4

X~ — X~ 3 = 1,2,...,5

X~ Nonnegative, Integer 3 =

X~ Nonnegative, Integer 3 —

The Two Duty Period Scheduling Problem of Figure 2.14

Transformed to a Network Flow Problem

Figure 2.16

63

--_

~

-— ---- - - _ ---_-_-_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1T T1H~~~



~~ -- -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ -

(P*) Miii c’x’ + c2 x 2

St TA 1’X 1 + TA 2’X 2 = Tb’

IX 1 — IX 2 = 0

x ’,x 2 Integer, Nonnegative

can be interpreted as a network flow problem with side

constraints. The nature of these side constraints is to

couple pairs of varia bles, forcing each pair to have the

same value. Hence, the two duty period scheduling

problem is equivalent to a network flow problem with

coupled arcs.

2.6 Decoupling Columns in Mathematical Programming

N to Obtain Equivalent Problems

Consider the mathematica l progra m ming problem

(LP) Mm CX

St A X b

or equivalently

614

4-

___  _ _ _  - _ _ -- - - ~~~~-•~~~~~~~~ --- ~~~~~~ 
-_

~~~~~~~~~~


- - -— - ~~~~~~ - —-- --- --— - _ - —

N

(LP) Mm ~~~C X
3=1~~~~~~
N

at ~~~A I
3=1~~~~~~

where A
3 is the jth column of the MxN matrix A.. Suppose

each vector [C
3

1 A
3
] were to be replaced by k

3
vectors

(C~ J A~) k =

having the property that

(C
3

a 3) = ~~~[C~ I ~~~~
k

~~,
= 1,...,N

• i_ i 3

k
and simultaneously X

3
is replaced by [X

J
,...,X J). We

can then create a new problem (LP*) with these new

variables plus the new constraints = X~~’ , k =

3 = 1,...N.
-

N k
3

(LP*) P u n E ~j ’~i k—i ~
N

St ~~ A k Xk

3—1 k—I ~

x~~— xr ’ = 0 , k = 1,. .,k
3
- 1

3 = 1,..., N

65 -

_ _ _ _ _ _ _ _ _ _ -- -- -~~~~ -~~~~- -~~~~~~~~~~ -
- _ - - -—

Proposition 2.1 (LP*) is equivalent to (LP).

Proof: Part 1

Let I = (11 112 ‘•~~~‘
1N) be a solution to (LP)

let ~~~ = X~
-

3 = 1, 2 ,= .., N k = 1,.-..,k
3

then

N

xr
l*, k

N~~~~

~~
1,2 ,..., N

and ~~ E Ak x k* = ~~ A~~ x . = A I = b
3=1 k= 1 ~ 3=1 k—I ~ -~ j =i ~
N k

3 N k
3 N

and ~~ ~~~ ck 1k*~~~~~ ~~~ x =~~~~ ~ ~ ~~~~~~3=1 k— i ~ 3= 1 k= 1 -~ ~ 3=1

1* 2* * 1* k *
1* = (1

1
111 ,... ,~~~~~~ 1 ,X

2
,... ,X

N

N
) is

a solution to (LP*) wits value CX

Par t 2

Let X* = (X~ ~~~~~~~~~~~~~~~~ be a solution to (LP*)

1* ~~* k*then = Xi = ... = , 3 =

1*let 1
3

= X 3 3 = 1,...,N

66 -

N N k3 N
then C I = (~~~)X = ~~~ C k X k*

3—i ~ 3=1 k=1 ~ 3—i k— i -‘ ~

N N Ic3 N 3

and A j 13 = (~~ A~) X 3 = ~~ A~~ X~~ b
3 1 3 1 k=i 3=1 k—i -~

so I = (X 1 ,X2 ‘••~~‘
1N) is a solution to (LP)

N Ic
3

k k*wi th value C. X
3= 1 k=1 ~

- QED

2.7 A Solution Procedure for the Two Duty Period

Scheduling Problem

Proposition 2 . 1 has shown that (P*) in Section 2 .5

is equivalent to (P) . The refore , a relaxation of (2) is

(PR) fi n C1X 1
+ C2 X 2

at TA 1 11
+ TA2 X 2

= b

whicn is simply a network flow problem. Since our

original problem (2) , the two duty period scheduling

problem , is an integer programming problem; we can

67
-

_ _ _ _ _ _ _ _ _ - -~~~~- - - - - -~~~~~~~~~~ - - — ~~~~~~- -~~~~~~~~ —- - -~~— ~~~-- -~~~~~~~~~-~~~- --- -

incorporate the relaxation (PR) into a branch and bound

implicit enumeration strategy. The following algorithm,

in the notation of Geoffrion and Marsten (1972),

outlines a solution procedure for the two duty period

scheduling problem.

Algorithm 2.1

STEP 0 Init ialize value of the best soluticn so far :

IN CUMBENT = INF INIT Y

Initialize the level of the tree search:

LEVEL 0

Let the initial candidate problem be the

original prob lem:

(CP) = (2)

STEP 1 Solve (CPR) , the relaxation of (CP).

If V A LUE(CP I -) ~ I N C U M B ENT , GO TO STEP 2

If (CPR) solution is feasible in (2) then

set INCU M BENT = V A L U E (C P P) and

GO TO STEP 2

LEVEL = LEVEL + I

GO TO STEP 2

68

I
~~~~~~~~~~

- 
- - - -~~~~~~~ __ -  - -



_ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ -~~~- -~~~~~~~~~-
-
~~-

-

STEP 2 Create the next Candidate Problem (CP) at

this level of the tree search.

If none exists, GO TO STEP 3

GO TO STEP 1

STEP 3 IF LEVEL = 0, STOP

Back up in tree:

Set LEVEL = LEVEL — 1

GO TO STEP 2

The relaxation (PR) can be used with Algorithm 2.1

for a solution procedure for the two duty period

schedul ing problem. For a s i gn i f i can t ly d i f f e r e n t ap-

proach to utilizing network relaxations for solving set

par t i t i on ing problems see Mulve y (1975) and Glover and

Mulve y (1976)

Mulvey (197 5) r e fornu la tes set par ti tioning problems

as transportation problems with side constraints (or

eguivalently as a generalized network problem). The

numbe r of arcs in the network flow problem is equal to

the number of nonzero entries in the constraint matrix

of the origina l set partitioning problem. Glover and

Mulvey (1976) also r e f o rmu l a t e the two duty period

69 -

-~~~~-- —- —.—~.---—- _ -

scheduling problem as a network problem with side

constraints. For each variable with two se9ments they

create two new nodes U~ and V and an “all—or—none ” arc
I 3

joining them . Rather than solve this network related

version of the problem direct ly , the au thors propose a

heuristic solution technique.

The re laxat ion (PR) is very weak , to the point of

being useless. However, we have great freedom in

choosing t C’,C
2); the only st ipulation being

C 1
+ = C. As we shall see in Chapter (4 , by choosin g

(C 1-,C2] properly, we can greatly strengthen the relaxation

(PR) . In fact wi th a modera te e f f o r t we can get (PR) to

be almost as strong as the LP relaxation of (2).

ii
70

I

PART II Implementation

CHAPTER 3

THE HELSINKI PROBLE M — THE RELAXATI ON

In this chapter we will discuss a special case of

the two du ty period scheduling problem — the two duty

period set partitioning problem (or the Helsinki

problem). The two segment characteristic of the problem

allows us to use a minimum cost flow problem as a

relaxation. The set partitioning characteristic means

this relaxation is simply a shortest path problem . In

addition, because the Helsinki problem is a set

partitioning problem, we can reduce its dimensions by

Logical considerations. In Section 3.3 we present an

algorithm for solving the two duty period set

partitioning problem. In the next section we develop a

branching procedure to be incorporated into this

algorithm. In Sections 3.5 and 3.6 we introduce an

algori tam for solving the shortest path relaxation.

71
-

_ _ _ _ _

—

3.1 The Helsinki Problem as a Shortest Path Problem

with Coupled Arcs

A special case of the two duty period scheduling

problem is the Helsinki Problem (HP)

(HP)

1

- 1 = 0 ,1

where 1 is the N dimensional vector of ones and where

each column of A consists of one or two segments of

ones. For example , see Figure 3.1. It was in this -

f orm , a set par t i t ioning problem , that 1Iarkku Tamaunen

of the Data Center of the Helsinki City Metropolitan

Area , f irst brought the two d u t y period scheduling

problem to the author ’s attention. The Helsinki problem

arose in trying to schedule the city ’s bus crews using

-- mathematical programming.

Applying to (HP) the t ransformat ions developed in

Chapter 2 yields:

72

-. -- —- ~~ ~
-
~

--
~~~~~~~~~~~~~~~~

-
~~~~

-- - - --

6

Mm
j—i~

st X1 X2 X3 X4 X5 X6 ENS

1 0 1 1 0 0 — i
0 0 1 1 0 0 = 1
0 1 0 0 1 0 — 1
0 1 0 0 1 1 =1

0 1 1 0 0 1 — 1
1 0 1 1 0 1 = 1

1 0 0 1 1 0 — i
0 1 0 0 1 0 1

— 0,1 3 —

An Example of the Helsinki Problem

Figure 3.1

73

_ _ ~~~~~ --- -~~~~--_ -—-~~~— —- - - -~~-- • ---- - - - -_— - ~~
_ - —

~~~~~~~
- _ - - - - - -- .--

~~~~~~~~~~~~~~~~~~~~ ---- — _--


-- ~~~~~~~~--—~~~~~~~~ ~~~

(HP*) fin ~~
y + C~ Z

St (Y,Z) in S

IY — I Z = 0

where S is the set of solutions to a shortest path

problem . For notational convenicnce we have replaced

each variable X
3

with Y~ (ra ther than X~) and (rather

than X~). See Eigure 3.2. Using the terminology of

Geoffr ion and Marsten (1972) we may write the relaxation

of (HP *) as

(H PE) fin C~ Y
-

+ C~ Z

at (Y ,Z) in S

Then a feasible strategy for solving (HP) is to

incorporate the relaxation (HPR) into a branch and bound

procedure , such as A l g o r i t hm 2.1. The relaxation (HPR)

is a shortest path problem with N + 1 nodes and (no more

than) 2N arcs.

We employ the follovin~j terminology.. We say that a

column X~ in (HP) correspond s
4 o two VARIABLES or ARC S

and in (HP *) and (HPR) . Ne refer to the coupled

arcs Y and Z as PARTNERS. Two variables (of (HP*))

___ -~~

~~~~~~~~~~ 

6 5
Mm ~~ C~

’Y
J 
+ ~~ C Z 3

i—i i—i

st Y1 21 Y2 22 Y3 23 Y4 Z4 Y5 Z5 Y6 ENS

1 0 0 0 1 0 1 0 0 0 0 — i
0 0 0 0 1 0 1 0 0 0 0  = 1
0 0 1 0 0 0 0 0 1 0 0 — 1
0 0 1 0 0 0 0 0 1 0 0 — 1  -

-

0 0 1 0 0 1 0 0 0 0 1 — 1
0 1 0 0 0 1 0 1 0 0 1 — i

0 1 0 0 0 0 0 1 0 1 0 —  1
0 0 0 1 0 0 0 0 0 1 0 —  1

— Z
3 3 — i ,2 ,. . ., 5

— 0,1 3 — 1,2,...,6

— 0,1 3 —

where C~ + C~ — C
3 3 — i,2,...,6

The Helsinki Problem of Figure 3.1 Reformulated with Decoupled
Arcs

Figure 3.2

75

--—

~ 

- - - -~~~~~~~ - ~~~~~-~~~~~~~~~~~~~~~ -~~~~~~~~~~~ - 
- -



CONFLICT if there is a row covered by both variables

(i.e. each column has a one in the sa me row) . We use

the terms RELAXATION and SHORTEST PATH PROBLEM

interchangeably. Similarly the terms VARIABLE (of

(HP*)) and ARC are used interchangeably, as are ItOW and

NODE (of the shortest path problem). Consequently, a

variable (of (HP *) ) covers a row if and only if the

corresponding arc starts in or passes over tha t  row. An

arc starts at a node if and only if the corresponding

segment of ones in the or ig ina l  Helsinki problem starts

at the corresponding row. An arc ends at a node if and

only if the corresponding segment of ones in the

original  Helsinki problem ends at the row preceding the

corresponding row.

3.2 Logical Elimination for the Helsinki Problem

Algorithm 2.1 can be reformulated more specifically

taking into account the special features of both the set

partitioning problem (HP*) and the shortest path

relaxation (HPR). Because the original problem (HP*) js

j a set partitioning problem , we know that once a variable

t is chosen (i.e. set equal to one), all, variables which

76

_ _ _



conflict with it may be eliminated (i.e. set equal. to

zero) .

Similarly , we can take advantage of the fact that

the relaxation is a shortest path problem and that it is

obtained by decoupling arcs. Consequently , what is true

of one arc is true of its partner. Therefore, when an

arc is chosen, we can eliminate all the arcs which

conflict with its partner as well as itself. Of course,

when an arc is eliminated , its partner is also

: 1 eliminated.

From the shortest path fo rmula t ion  it can be seen

that if no arcs enter a node, then all arcs leaving that

node may be eliminated. This is simply because ~o arc

leaving that node can participate in a solution to the

shortest path problem. Similarly, if no arcs leave a

node , all arcs entering that node may be eliminated.

— — 

77 

-- —

~~~~~ 

-

~~~~~~~

— 
J_4



3.3 An Algorithm for Solving the Helsinki Problem

Algorithm 2.1 outlines the general procedure for a

tree search. It is an interesting feature of the

algorithm which we will now develop that a node in the

search tree will often have more than two successor

nodes. At any given node, rather than choosing a single

separation variable (S~PVAR ) to branch on, our algorithm

will choose a number of variables in a manner we will

describe in Section 3.4. They will correspond to the

• arcs starting at a given xiode in the shortest path

relaxation. Each branch at a node will correspond to

including exactly one of these arcs. See Figure 3.3

correspon ding to the example in Figure 3.2.

We have employed soi~e special notation in Figure

3.3. Each circle correspond s to a node of the search

tree. The number within each circle represents the

level on the search tree (i.e. the number or separation

variables which have been chosen in reaching that node).

Each arc in Figure 3.3 corresponds to a branch. The

label on each arc indicates the separation variable at

that branch. For example, the label 
~l’ 

on the branch

78 - 

~~—- --~



-~ -- - - - - - -~ -~ ---- -- - -~~~~~—~~~~~~~~~—~~—- --—--~~ - --- - - - -  ~~
--------- --

~ -

p.-

u-s
m 

N
N

v-s

N

-4

C-,’N

* m

C-”

N ~~ -*
— N 1-4

0 — 00
-“ Igx4

irs
N 00

•p41-r “ r 14

I



F—- _ _ _ _ _  - - - -

leading to the second node on level 1, indicates that y1
was set equal to one at that branch.

The unusua l  aspect of the tree in Figure 3.3 is

that  each node has associated wi th  it a height as well.

as a level. The row nu mbers on the lef t  hand side

indicate a node ’s height.  TIA e height  of a node

indicates the first row of (HP*) which has not been

covered by the separa tion variables chosen in reaching

that node. In terms of the snortest path interpretation

of (HP), choosing a separ ation var iab le  to be in the

solution corresponds to choosing an arc to be in the

path. Consequently, the row number or the height of a

node in the search tree correspond s to the node in the

shortest path solution which has been reached as a

result of choosing separation variables (or arcs). lot

example, choosing Y3 to branch on at level 0 brings us

to a node at level 1 and height 3.. Row 3 is the first

row not covered by T3• And the arc ends at node 3 in

the shortest path interpre tation. At any node of the

search tree each branch corresponds to an arc which

begins in the first row not covered by the separation

variables chosen so fa r  ( tha t  row is just the height of

the node).
- 

- 

80

- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



_ _ _ _ _ _  - - - -~~~~ -~~~~~~~~~~~~~~-—~~~~~~~~~~~- - - ~~~~~~~- -~~ - -  -~ -—- -- ~~~~~~ -~~~~~~~ --~~~~~~~ - - -  - -

• Algorith m 3. 1 reiterates, with greater specificity,

Algorithm 2.1.

Algorithm 3. 1

STEP 0 INCUtJI3EIJT = iNFINI TY

LEVEL = 0

(CP) ~~
- (HP)

(CPR) = (HPR)

STEP 1 Solve (CPR)

IF VAL (JE (CPR) ~ IN CU liBENT , GO TO STEP 2a

IF (CPR) solution satisfies V = Z then

set INCUHBENT = VALUE ( C P R ) and

GO TO STEP 2a

LEVEL = LEVEL + 1

GO TO STEP 2b

STEP 2a Set SEPVAR (LEVEL) = PABTNER (SEPVAR (LEVEL)) = 0

Reinstate those variables eliminated at this

LEVEL because they or their partners

conflicted wi th  SEPVA R (LEVEL ) or its

partner.

81 

~~ -~~~~--~~~~~~~ -- —_



STEP 2b Create the next Candidate Prob.Lem (CP):

Choose a new separation variai’le for this level,

SEPVAR (LEVEL)

If none exists, GO TO STEP 3

Eliminate (i.e. set equal to zero) all.

variables, and their par tners, which

conflict with SEPVAR (LEV1~L) and

PART NE~ (S E V (LEV EL) )

Set SE PVA R ( L E Y h L )  = PA1iTNEF (SEPVAR (LEVEL)) = 1

GO TO STLP 1

STEP 3 IF LEVEL = 0, STOP

Back up in tree:

Reinstate all the se~aratiou variables

eliminated at this LEVEL

Set LEVEL = LEVEL - 1

GO TO STEP 2a

3. 14 The Branching Procedure

The shortest path interpretation of the Helsinki

problem suggests a natural. branching procedure. The

82 

-:- —



_ _ _ _ _  

___ - -~~--- -~~~~~~~ - - - - - -~~~~~~ -

original problem (HP) can be considered one of trying to

construct a shortest path such that for each arc

included ~~~1L the path its partner is also included.

Consider then , the branching procedure as one of trying

to construct such a path. At the top level of the tree

solve the relaxation. Then choose as the separation

variable the arc in the relaxation solution which begins

at node 1. See Figure 3.3.

A similar process is used to choose a separation

variable at all nodes of the decision tree. Each such

node corresponds to a partia l solution (the set of

variables fixed to be in the solution by choosing

separation variables at each level in reaching this

node). To choose the next separation variable, solve

the relaxation. Then choose the first arc, say V ., in

- l  

the shortest path solution that has not ai.ready been

chosen as a separation variable in reaching the present

node of the decision tree. Then V. is the natural
)

candidate for the separation variable. At the next

level set (and Z~) equal to one and repeat the

process.

83

-

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J


____ -~-—----— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~- -~~~ - --~~~—-~~~~~~~~- - -~~ -
~~~~~~~~

- - --

I

When a node is fathomed - the separation variable at

the present level is eliminated and the variables which

were eliminated at this level, because they conflicted

with this separation variable, are reinstated (i.e.

they become free variables with no fixed value). The

relaxation is resolved and a new separation variable is

chosen, if the relaxation is feasible, in the manner

described above.

This procedure is equivalent to binary branching

(two branches from each j&ode, one vita the  separation

variable set equal to one, and the other equal to zero)

in the sense that choosiziy the next separation variable

at a level is equivalent to making a branch with the

(previous) separation variable set equal to zero.

3.5 Solving the Relaxation

Step 2 of Algorithm 3.1 greatly reduces the size of

the cand idate prob lem. Consider the example of Figure

3.2. The corresponding shortest path problem is given

J 

in Figure 3.4. Since Node 2 has no exit, we may

eliminate T~ and its partner Z1 (see Figure 3.5). On

81$

~‘—-- —i-- 
- —

-

~

-

~ 

— 
_________



0’

N
N

N 00

‘-I -~N N

N >-4

N 01

00
“4



I

- 
- Eliminate Y1 and hence Z1

~~~~~~~~~~~~~~~~~~~~~~~~

Preliminary Logical Elimination

- - Figure 3.5

-

86

- ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ —~~ —- — ------~ - -- ~~~~~~~~~~~~~~~~~~~~~~

the first branch, if we choose Y3
as the separation

variable, then we may eliminate those arcs conflicting

with either V 3 or Z3 (see Figure 3.6). Similarly, at

the second possible branch from level 1, we may choose

V 4 as the separation variable. Consequently, we may

eliminate those variables (and their partners)

conflicting with either V 4 or Z4 (see Figure 3.7).

In the same manner , we can reduce the problem size

by logical elimination at Step 1 of Algorithm 3.1, while

solving the relaxation proble m (CPR). Our relaxation is

- a shortest path problem which we will solve with a

labeling algorithm. Consider the following forward

reaching algorithm for solving a shortest path problem

with N + 1 nodes (Denardo & Fox (1977)]:

Algorithm 3.2

STEP 0 Let FORW ARD L A B E L (N O D E) = INFINITY for each

node except NODE = 1 , FORWARD LABEL(1) = 0.

Let NODE = 1.

87

_ _ _ _ _ _ _ _ - —
~~~~~~~~~~~~~~

---
- -



- —

~~~~~

-— -

~

--—

~~~~

-

~~

-—--— —- —--- - - - - -- -
-:--

- --

Choose Y3 as separation variable and eliminate those arcs
conflicting with Y3. (Y1), Y4 and their partners: (Z1), Z4

6

Note: has no 
:it

I hence elimi:ate 
~2’ 

Z2

Y3 chosen, so eliminate arcs conflicting with its partner Z3: ~6

Branch 1 L~~e1 0 

•

Figure 3.6

88 

_ _

- 

—— -  - — —-- —•--

~~~~~~~~~ 

—-

~~~~~ ~_ _ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
- •—- -—-.-—--. -• —. ~~~~~~~~~~~~~~ - -



_ _ _ _ _ _ _ _ _ _ _ _ _ _  -

Choose Y4 as separation variable and eliminate those arcs

conflicting with Y4: (Y1), Y3 and their partners: (Z1), Z3

Q~~~~~~~~~~~3 Q 5 6 ~~~~~~~~~~~~~~~~~~~~ 9

V4 chosen, so eliminate arcs conflicting with its partner Z4:

• (Z1), (5)~ Z5, Y6 and their partners: (Y1), (Y3), Y
5

- 

Branch 2 Level 0

Figure 3.7

89 -

L -~~~~—~~~~ ~~~~~~~~~~~~ --—~~~~~~ - ~~~~~~~~~~~~~ - - ~~~~~~~ -~~~~~— ~~~~~~~~~~~~~~~~~~~ 



- --- ~~~-~~~~~~~~-~~~~~~~~~
---

~~
-- -~~- ~~~~~~~~~

----
~~~~

-- - -
~~~~~~~~~~

- - - - - -

I
STEP 1 For each arc which begins at NODE, if

FORWARD LAB EL (N ODE) + COST (AR C) is less - -

than the FORWARD LABEL for ENDARC, the

node at which ARC ends, replace FORWARD

LABEL of ENDAR C with FORWARD LABEL (NODE) +

COST (ARC)

STEP 2 Let NODE = NODE + 1-. If NODE = N + 1 , STOP.

H STEP 3 If FORWARD LABEL (NODE) < INFINITY, GO TO STEP 1.

GO TO STEP 2

Similarly there is a backward reaching algorithm.

See Figure 3.8.

3.6 An Iterative Backward—Forward Alcorithm for - 

-

Solving the Relaxa tion

Note tha t if the branch and bound scheme has

already found a feasible solution there is an INCUI4BENT

< I N F I N I T Y .  In step 3, INFiNITY may be replaced by

INCUMBENT , making the algorithm stronger. However, an

even stronger test may be applied at step 3.

90 

1 
—- - - - - - - - —



- 
- - -  _________

Forward Reaching:

I

.

Generates a set of forward labels for each node j, j 1,2,...,9,

indicating the cost of the cheapest path from node 1 to node J.

Backward Reaching:

Generates a set of backward labels for each node j ,  j  = 1,2,...9,

indicating the cost of the cheapest path from node j to node 9.

- Shortest Path Algorithms

Figure 3.8

91

_ _  - - - - - - —--~~~~~~~~~~~~ 
—----- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ -- - - - - -~~~~~-~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Suppose tne relaxation is solved first using the

backward reachin,~ algorithm. Tnis would result in each

node having a BACKWARD LABEL indicating the cost of the

cheapest path from that node to the N + 1st (last) node.

Now consider the implications for a subsequently applied

forward reaching algorithn to the relaxation . The test

•at step 3 may become

If FORWARD LABEL (NODE) + BA CKWARD LABEL (NODE) <

IN CU M BENT , GO TO STEP 1

This test checks each node, to see if it is

possible for an arc endin g or starting at that node to

participate in a solution better than the incumbent.

The new test at step 3 way allow us to eliminate all.

arcs (and their partners) which begin at the node being

considered.

However , because of the ccuçle d arc na ture of our

shortest path relaxation , it is better to instead add a

new test at step 1:

If FORWARD LABEL (NODE) + COST (ARC) + BACKb~APD

LABEL(ENDARC) > INCUNBENT , eliminate ABC

92 

- - - - - -



—- ~~~~~~~~ - - -—---- - - -—~~---.- - - --— ,~ — - - --- -

This new test at step 1 may allow the ARC

considered to be eliminated since it cannot participate

in a solu tion of the (CPR) better than the INCUMBENT.

When the arc is eliminated, its partner is also

¶ eliminated. This new test at step 1 makes the new test

at step 3 redundant. See Figure 3.9.

The advantage of these new bounding tests is that

they may eliminate arcs (and consequently their

partners). The tests reduce the problem size and

tighten the relaxation by eliminating partner arcs.

Of course the forward labels can be used in

strengthening the backwar d reaching algorithm in a

similar manner. An iterative process of solving the

shortest path problem by backward and forward reaching

can be used until equilibrium is reached, (i.e. until no

arcs are eliminated in a full cycle of the algorithm —

one backward pass and one forward pass).

A lgorithm 3.3 is the solution proced ure for solving

the shortest path relaxation (CPR) in Algorithm 3. 1,

which incorporates these ideas. FORWARD (BACKWARD) STOP

is a ila; to let us know whether or not the last forward

93

_ 
_ - --- -~~~~~~~~~~ ---



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Forward Label Backward Label
for node 4 for node 6

Arc Y~ may be eliminated if FORWARD LABEL(4) + COST(Y
J
)

H + BACKWARD LABEL(6) is greater than INCUMBENT

Iterative Backward—Forward Reaching

Figure 3.9

IL _
_ _ _ _ _ _ _



A0 AOSS 786 MASSACHUSETTS INST OF TECH CAMBRIDGE OPERATIONS RESt—ETC FIG 1211
A LASRANGEAN RELAXATION ALGORITHM FOR THE Two DUTY PERIOD SCHEO—ETC(IJ)
IJUN 78 W B SHEPARDSON DAAG29—76 C—006U

UNCLASSIFIED TR—152 ARO—1’4261.9—M NL

2~~3
ADA

055768 _____________________________________________ __________________________________ ________________________________________________________

a 
_  _ _

_ _ _



F-

(back ward) pass of the algori thm eliminated any

variables. Conseguently , whe n F O R W A R D  STOP = BACKWAR D

STOP = 1, the algori thm is finished.

Algor i thm 3.3

STEP 0 Let BACKWARD LA B E L (NODE)  = 0 LOr all NODES

BACKWARD STOP 0

STEP 1 Let FORWARD L A B E L (N O D E )  = INF IN I TY for each node

except NODE = 1, FOR W ARD LABEL ( 1) = 0.

Let NODE = 1.

FORWARD STO P = 1.

STEP 2 Choose an ARC which begins at NODE

If none exists go to STEP 4

95



~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

STEP 3 If FORWARD L A B E L (N O D E) + COS T(ARC) +

BACKWARD L A B E L (E N D A R C) ~~. IN CUIIEEN T ,

eliminate ARC , P A R T N E R (A R C) , set

FORW AR D STOP = 0, GO TO STEP 2.

If FOR d ARD LABEL (NODE) + COS T(AR C) <

FO R W A R D L A B E L (E N D A B C) , F ORWARD

LA B E L (E N D A R C) = FORWARD LABEL (NOD E)

+ COST (ARC)

GO TO STEP 2.

STEP 4 Let NODE = NODE + 1

If NODE = ~ + 1 (the last node) , GO TO STEP 6.

STEP 5 If F O R W A R D LA BEL (N OD~) + B A C K W A R D LAB E L (1~ODE)

< INC Uf ~B ENT , GO TO STEP 2

Eliminat e all a rcs and their partners vhic~i begin

at NODE. If any arcs are elimi nated at this step,

set FORWARD STOP = 0

GO TO STEP 4

STEP 6 If F O R W A R D LABEL (M + 1) ~ INCU M BENT , STOP

If shortest path solution satisfies I = Z , STOP

If FORWARD STOP = BACKWA RD STOP 1, STOP.

96

~

.. ..~ .- .
_ _ _ _ _ _ _ _ _ _ _ _

~

STEP 7 Let BACKWARD LABEL(NODE) = INFINITY for each

node except NODE M + 1,

BACK W A R D LABEL (~ + 1) = 0.

Let NODE = N + 1

BACKWARD STOP = 1

STEP 8 Choose an arc which ends at NODE.

If none exists go to Step 10.

STEP 9 If BACKWARD LABEL (NODE) 4 COST (ARC) +

FORWARD L A B E L (B E G IN ARC) ~~.

IN CU~1BENT , Eliminate ARC , PAR T N ER (AR C) ,

set BACKWARD STOP = 0, GO TO STEP 8.

If BACKW AR D LA BEL (NOD E) + CO ST (ARC) <

BACKWARD L ABEL(B EG IN ARC) ,

BACKWA R D LAB EL (B E G I N A R C)

= BACKWARD LA BEL(N OD E) + COST (ARC)

GO TO STEP 8.

STEP 10 Let NODE = NODE — 1

IF NODE = 1, GO TO STEP 12

97

STEP 11 If BACKWARD LABEL(NODE) + FORWARD LABEL (NODE)

< INCUMBENT, GO TO STEP 8

Eliminate all arcs and their partners which

end at NODE. If any arcs are eliminated at this

step set BACKWARD STOP = 0.

GO TO STEP 10

STEP 12 Ii BACKWARD LABEL (1) ~~, IN CUMBENT , STOP

If shortest path solution satisries I = Z , SWP.

If FORWARD STOP = BACK WARD STOP = 1, STOP.

GO TO STEP 1.

In applying the methods of this chapter it was

found that the shortest path relaxation is too weak.

This HELSINKI algortihm did not cow~are favorably, in

solving large problems, with existing more general

algorithms such as Narsten ’s Set Partitioning Algorithm

(SETPAR). The HELSINKI algorithm was effective in

reducin~j the size of the problem (by roughly 60% at the

second level of the tree, 80% at the third level and 90%

at the fourth level • However, the relaxation was so

weak that ‘ost nodes in the tree were fathomed by

infeasibility (due to eliminating variables) rather than

by bounding. Consequently, the a lgor i thm genera ted a4. 98

huge tree. In spite of the speed with which the

shortest path subproblems could be solved ; the entire

Helsinki problem could not be solved in a reasonable

amount of time.

In order to overcome this difficulty, we took steps

to tighten the relaxation. These will be discussed in

the next chapter.

• 99

CHAPTER 4
* 1 .

TIGHTENING THE RELAXATI ON

In this chapter we construct a Lagrangean

relaxation of the Helsinki problem by dualizing with

respect to the coupling constraints. This results in a

r ela xation tha t is a shortest path problem with arc

lengths that depend on the cur rent values of the

Lagrange multipliers. Using subgradient opt imizat ion to

maximize the Lagrangean leads to an interpretation of

seeking an optimal allocation of the costs of the

• original variaoles betwaen their decoupled arcs. In the

• final section we show that, by using this technique to

tighten our relaxation we can reduce the size of the

search tree generated by the branch and bound algorithm

of the previous chapter.

4.1 Subgradient Optimization and the Helsinki Problem

Consider the Helsinki problem:

V

100

-—
_ _~-1~~~~’~~ • •— —

~

(HP) Min C~ I + C~ Z

(Y,Z) in S

IY — I Z = 0

Y,Z = 0,1

where S is the set of shortest path solutions.

By mul t ip ly ing II — IZ by the dual variables U and

addin g the result to the object ive funct ion , we can form

the Lagrangean relaxation of (HP) (Everett (1963) ,

Geoffrion (1974)):

(HPR) W (U) = Mm C~ 1 + CZ Z + 0(1 — Z)

St (Y,Z) in S

Y,Z 0,1

Note tha t (HPP u) has the property that it is not altered

• by dropping the integrality conditions on I and Z (indeed

(Y ,Z) in S guaran tees Y,Z = 0,1). This feature is known

as the INTEGRALITY PROPERTY (Geoffrion (1974)]. Then

(LI PR u) can be rewri t ten •as

101

• (HPR u) V (U) = Mm (C1 + U) I + (C Z — U) Z

st (Y ,Z) in S

Note that V (U) is a piecewise linear concave function

since it is the pointuise minimum of a family of linear

functions of U. Since 11(U) has the integrality property

M a c W(U) is equivalent to the linear programming
U

relaxation of the Helsinki problem (Geoffrion (1974) 3..

Geof.frion has shown that Lagran~ean relaxation can be

very effective when used in branch and bound algorithms.

Held , Wolfe and Crowder (1974) have shown that

using a techniaue now known as subgradient optimization

• is effective in maximizing the Lagrangean. Consider our

function W (U). Suppose (!,Z) is optimal for U:

W (U) = (C1 + U) ! + (C Z — ~i) Z

We define s to be a SUDGEADIENT of V at 0 if and only if

W (U) < 0 (6) + (U —

for all U. Then the vector s at a points into the half
space (orthogona l to s) which contains all better

• 102

(larger) solutions to W. Consider a U’ such that 0(U1)

> 0(U), then

A A

* V (U’) > W (U) > 0(11’) — (U’ — U)s

=) (U’ — G)s > 0

which means (U’ — 0~ forms an acute angle with s. This

implies that U’ is in the half space into which s points

at U.

Consequently, a subgradient can be considered a

• good direction to go in search of a higher value of V .

Consequently, we will maximize W iteratively. At each

• iteration we choose a new Ut+l by moving from our last

U t in the direction St. That is

= U t + atst

where a t is the step length.

A A

Now , we show that (I — Z) is a subgradient of V at

8. Recall

A
1A A A A A

0(0) = C !+ CZZ + U (Y_ Z)

103

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ •

No v

Y
•.

0 (U) = ll in C I + C~Z + 11(1 — Z)

at (Y ,Z) in S

A A A A

=> 0 (U) £ C Y + C Z + U (Y — Z)

y A A A A A

=> 11 (U) £ C Y + C Z 4 11(1 — Z) —
A A A A A

11(1 — Z) + 11(1 — Z)

A A a A

=> 0(U) £ 0(11) + (U — U) (1 — Z)

whic h is j u s t the definition of (Y — Z) as a subgra dient

of V at U. Notice that our proof of this did not depend

on the constraints (I - Z) put into the objective

function. A general result holds that whenever a

Lagrangean relaxation is formed , if constrain ts AX ~ b

are pu t into the objective function then the vector

(AX — b) is a subgradient for the Lagrangean..

Take (HPR u) as the relaxation of the Helsinki

problem (HP). In particular (HPR0) is the Shortest Path

Rela xation obtained in chapter 2 by decoupling the arcs.
A A

However , since I - Z is a subgradient of V at U, the

104 4
•1

relaxation may be tightened by utilizing subgradient

optimization techniques (Agmon (1954), Motzkin &

Schoenberg (1954), Poljak (1967), Goffin (1971, 1976),

Held & Karp (1971), Hel d, Wolfe & Crowder (1974),

Fisher, Northup & Shapiro (1975) 3.. In this way the

Lagrangean relaxation value should approach the value of

the linear programming relaxation.

We use the following version of subgradient
A

optimization. Let W be the TARGET VALUE , a guess at the
• t+1 — t t t

optimal value of Max 0(U).. Define U = U + a s
U

where s~ is the subgra dien t a t itera tion t and a t is the

step length. Since W(U t+1) £ W(U
t) + (tP~’

— U t)st we

m ay consider W (U ~~) + (U t+1
— U~)s

t to be an upper

bo un d or approximat ion for W (U ~~~).. Then, since we want

to reach our targe t value ~~, pick ~~~~ so that our
A t+1 t t t

approximation will equal 0. Choose U = U + a s

• t . t t
(i.e. choose a , since U and s are already

A t+1 t t
determined) to satisfy V = W (Ut) + (U — U) s = W(U)

+ a t 1s t
~
2 . Then a t = LW — W(U

t
)]/ Is

t I 2

Computationally, solving for at and ~~~ at each
at A t

iteration is very simple. Since s = I — Z , (where
A~~~~~~A t t 2(I ,Z t) is optimal in W(U)) , ~s is just equal to

105

Ih~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • •~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ .~~~~.

the nuiber of arcs in the shortest path solution whose

partners are not included in the solution.

In practice, in order to assure convergence,
we will include a mul tiplier dt , 0 < dt £ 2, in

• compu ting at [Held, Wolfe & Crowder (1974) 3

a t = d t [W — W (U t
))/ 15t

1
2

1.2 Interpreting the Subgradient Optimization Iteration

for the Helsinki Problem

Conceptually then , each iteration of the subgradien t
optimization merely reallocates the cost C

3
of

between and Z~ .

0 (U) = Mm ~~~ [(C~ + U~)Y~ + (C~ — U~)Z~)
(Y,Z) in S

ur’ = + d t (w — W (U t)]st/ 15
t

1
2

= U~ + dt [W — W (U t)] (Y t
—

~~~~~ 
I s t t 2

106

• —-



So (C~ )
t+1 = C

’
~ +

= C~~ + U~ + dt(W — W(Ut) 3(Y — )/  I s  t1
2

= (C~~ )
t 

+ d t(W _  0(Ut ) ) ( Y ~ — ~~

and (C~~)
t
~~ = (C~~ ) t - dt

[ W  - 0(0t) ) ( y - Z~
t )/ 1s1 2

If we let P~ be the penalty at iteration t + 1

E dt [ W  — W ( U t) ]/ ~~t ,
2

Y t+1 Y t A A

Then (C . ) = (C
3 

) + P (Y~ 
— )

• = (c~ )
t + p t j f = 1 and = 0

(C~~ )~~~ 
= (C~~ I hi~ 

= 

A t
= (C~ ) — P if Y~ = 0 and = 1

Z t At  A
t

And = (C j ) — P if Y~ 1 an d = 0

(C~ )
t+1 

= (C~ )
t if =

= (C~ )
t + P~ if = 0 and = 1

For a variable X~ , if the partners Y~ and are

both included in the s~ortest path relaxation solution or

are both not included there is no adjustment in the

alloca tion of C~ to C~ and C~ . However ,if one partner

107

L _______ 
_ _



(say ) is included and the other (Z ~~) not, then the

included partner is given a higher cost ( (C~)~ + p ~ ] to

make it less attractive and the excluded partner is given

a lover cost ( (C~ ) ~ — pt 3 to make it more attractive.

The algorithm tries to make partners equally desirable

so that if one is chosen the other is also chosen.

4.3 Choosing the Target Value

In imple menting subgradient  opti mi zati on there are

a num ber of degrees of freedom. Generally U~
+1 is

determined by

= U~~ + d ~ ( (~ 
— V (U t ) ]s~/ I s~ I 2

It has been shown [ Held, Wolfe & Crowder (1974) 3 that  the

algorithm will converge to Max 0(11) if 0 < d
t £ 2,

dt —> 0 and the sum of the d s diverges.. In practice

we have begun with d°= 2 and then periodically

reduced it by half. This strategy follows that of Held,

Wolfe and Crowder (1974)..

108

— —



A fur ther  choice in the algorithm is the selection

of the target value. Solving the relaxation serves two

purposes:

1. A relaxation value grea ter than the incumbent

allows us to fathom that node of the search

tree

2. A re laxation solution which is feasible in the

original problem (HP) also allows us to

fa thom that  node of the tree. This is because,

• in our Lagrangean relaxation 0(U), we dualized

with respect to the constraints Y = Z. Since

• • these constraints are equations, f inding a

feasible answer guarantees complementary

slackness.

Rather than take the incumbent as the target value

we have generally taken a value som ewhat higner . On the

assumption that Max 0(0) is greater than the incumbent,
U

it is reasonable that 0, which would be M ax 0 (U)
U

ideally, be greater than the incumbent. We have tried

using the incumbent as veil as higher values. We have

found the latter to be significantly more effective in

109



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

reaching the incumbent. In practice we have used 120%

of the incumbent as the target value.

11.11 Tree Structure — Bounding a Set of Nodes

The Lagrangean relaxation approach developed here

has been embedded in a tree search. Specifically we

have used it as the relaxation procedure in Algorithm

3.3. Computational experience with this algorithm shows

that for each level we descend in the tree we eliminate

a large proportion of the variables. Consequently in

the lover levels of the tree we are dealing with a small

subset of the original variables. 2he result is that

the subgradient optimization procedure tends to derive

costs (C’1’ ,CZ) for the uncoupled arcs that are not

reasonable in other parts of the tree.

In order to combat this problem we have

experimented with a number of implementation options.

Etcheberry (1976) has reported that one successful

strategy is to save the values of the dual variables U t

~~~~ at each level of the tree and use them the next time

• that level is visited, We have tried saving the dual

110

1 1

~

variables and utilizing them in a number of ways. At

each level we tried using the last Set of dual variables

obtained at tha t level. We have also tried using the

last set of dua l variables used at the ncx t higher

level. In addition we have tried a number of more

exotic (and less effect ive) ways of using the stored

dual variables.

However , we finally settled on a procedure whicL

does not require saving dual variables at all. At level

0 we begin wi th dual variables U 0 = 0 and apportion the

cost C~ of each variable in the original prob lem between

C~ and C~ , propor tional to the number of rows covered by

the segment of ones in 1. and respectively. For

example if C . = 100 , !
j
covers 3 rows and covers 7 rows,

then we set = 30 and C~ = 7 0 . From then on we simply

use the most recently genera ted set of dual variables to

determine (C Y,CZ) ~~
, The effect of this is to use the

dua l variable values obtained at the next h igher leve l,

as we are moving down in the tree. When a node is

• f a thomed , before choosing a new separation variable at

tha t level , we try to fa thom all of the rest of the

candida te separation variables at that level in one fell

swoop by solving th e re laxat ion with the old separation

111

variable eliminated. This is equivalent to doing a

branch with the old separation variable set equal to

zero, hence we refer to it as binary branching. This

binary branching serves a number of purposes.

First , it is very of t en successful in el iminat ing •

all of the rest of the possible bran6hes at that level.

This allows us to immediately move back up in the tree

one more level. If there are , say, eight more candidate

branches at the current level, for the work of one

branch we can eliminate all eight.

Second , this procedure of binary branching allows

us to choose the next separation variable in a rational

way. Even if the bina ry branch is not successful in

eliminating all of the remaining eligible branching

variables, it may succeed in eliminating some of them

when there is an incumbent soluticn to the problem .

• Further , the test solution obtained during the

subgradient optimization is used to choose the next

• separation variable. This best solution is a path

• • composed from the decoupled arcs. Consequently, we

simply use as a separation variable the first arc in

• this path whic h has not already been chosen as a

112

separation variable in reaching this node of the branch

and bound tree.

Third , binary branching allows a mechanism to bring

the dual variables in line wi th the optimal ones at the

current level . In practice, when we are below level two

in the search tree, we do not do a subgradient opti—

mization as we are going down in the tree. We have

found that the improveme nt in the dual variables gained

is not enough to offset the extra computation involved.

However , we do continue to use subgradient optimization

below level two as we are moving up (or sideways) in the

tree, i.e. whenever we perform a binary branch. Con—

sequently, once past level two it is very easy to go

very far down in the tree since we use only the

relatively weak shortest path relaxations, without

subgradient optimization. Binary branching gives us a

method for getting back up in the tree without

examining a prohibitive number of nodes. Rather than

examine each remaining candidate branch individually at

a level, we are often able to fathom them all at once by

doing a branch with the old separation variable set

equal to zero. In addition, as we work our way back up

in the tree it is a method for getting the best possible

113

—• --- -~~~~~

dual variable values at each level (since we always use

subgradient optimization at a binary branch) and does

not require storing dual variables at every level.

One problem we encountered with this technique is

that we were dealing with a large number of subproblems

of very small dimension . over and over again we would

reduce the problem to one with just a few variables but

we could not fathom the node with either pure shortest

path or subgradient optimization of the Lagrangean

relaxation. Chapter 5 will deal with a iiew “relaxation”

which we developed in order to handle this

characteristic of the problem.

F
114

4
_ _

_
• .

~~~~~~
~•



CHAPTER 5

A ROLE FOR PRIME NUMBERS IN INT!GER PROGRAMMING

In this chapter we show that any inte,~er program-

ming prob lem may be easily reformulated as a knapsack

problem using the unique properties of prime numbers.

We show that the same techniques may be used to linearly

order the nodes of a search tree in solving an integer

program.  Such a linear order ing can be used to reduce

the number of subproblems that need to be evaluated. In

Section 5.5 we develop a new a lgor i thm for the set

partitioning problem , based on the knapsack representa—

tion. In the next section this algorithm is incor-

porated into the HELSINKI algorith m to fathom small

subproblems . We present an algorithm for the set

covering problem in the last section.

115

-- — • -- •-~-



5.1 Reformulating an Integer Programming Problem as

a Single Constraint Integer Programming Problem

Consider an integer linear pro~ramming problem (IP)

N

(IP) fin C~X~ii.’

N

St a j  X = b j i = 1 , . .. . , M
i—i i i

X~ ~~O , Inte~ er j  = 1,. . ., N

where a~ 1 
and b1 are integers.

It is known that (IP) may be reformulated as a

singly constrained problem [Garfinke] .  & Newhauser

(1972) ].

The technique involves considering the constraints

two at a time. A pair of multipliers is found and the

weighted constraints are combined to replace the

original pair with a single constraint. This trans—

formation yields an integer program with only one

constraint (IP’).

116

‘4

1’ 
_ _ _ _ _ _  

_ _ _ _



-~~

(IP’) fin C3X3i_i

N
V.’

st ~~ i., X , = b
3=1 ~

X~ ~~O,Integer j = 1,...,N

5.2 A New Method for Reformulating an Integer

Programming  Problem as a Knapsack Problem

It is easy to show that  the re exists a set of

multipliers, namely the logarithms of the prime numbers,

which may be used to combine an arbitrary number of

constraints.. This set of multipliers can be used to

re formula te  any integer p rog ra mm ing  problem as a

knapsack problem (where some of the objective funct ion

coefficients may be negative) .

Consider , again , the general integer linear

programming problem (IP). Let P~, i = 1 ,. .. , f be the

f i r s t  N prime numbers.  Then, if is an integer,

j = 1 ,. .. . , N

117



N
a 1 I = b i = 1 , . ., N

3=1 ii

N
X -b

P
1 = 1  i 1 ,...,li

N
M .X - b

T T  
~— 1 ’

~~~ ~
lip 4 = 1
1=1

H N

E a . X. — b1)].nP1 =
1=1 3=1 ~~

< > ~~
(
~~ a1 lnP~)X = ~~ b1 lnP

1• j=i 11

where going from the second statement to the third

statement depends upon the unique properties of the

prime numbers.

Consequently, any integer programming problem (IP)

with integer coefficients in the constraints, can be

rewritten as a singly constrained integer prog ramming

Problem (K).

1 118

LE~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _ _ _ _ _ _ ~~~~~~ • ~~~~~~~—.—

_ _ _ _ _ _ _ _
•

N

(K) fin EC 3
x3i—i

St (~~ a~ lnP1
) X = ~~~ b1lnP 1

3=1 1=1 1=1

X
3 ~

0, In teger j = 1 ,.. ..., N

We refer to (K) as the knifedge problem because of

three characteristics whic h d is t inguish it f rom the

knapsack problem . The f i rs t cnaracteristic is that the

constrain t coefficients are not the desired small

integers. Ratbe~, they are irrational numbers and any

t r ans format ion which does not sacrifice accuracy woul d

result in integer coefficients of infinite size. The

• second characteristic is that the constraint is an

equation , making the usua l linear rela xation (obtained

by taking the variables in order of their ratios

C~ J. / ~~~ a13 lnP1i—i

and setting the fractional variable to the largest

smaller integer) almost usele ss.. Indeed the constraint

defines a fine “edge” with no width to it at all. The

third characteristic is that, quite likely, some

coefficients of the objective function or the constraint

119

‘
4

--- -~~~-‘— -~~- . ‘ ~—~~~~~~-—~~~~~~-

may be negative. Unlike a normal knapsack problem , if

the objective and constraint coefficients of any

variable are of unlike signs, that variable cannot be

assigned immediately a value. This is due to the

equation constraint. It is possible, however, to modify

(IP) so that (K) will have all positive constraint

coefficients.

To (12) append the constraint

N+1

= B
3=1

where B is a suff ic ient ly large number and is a slack

variable with CN+l = 0. We ha ve

N+1

(12’) fin C
3=1

N+1

St ~~~~ X = b1 i = 1,..., M
3—1 ~

N+1
X = B

3—1

> 0, Integer j = 1,... ,N

120

I— ~~~~
• - -- •• _ - • - • _ --

~
-
~

• — _ -
~~~~~

-
~ 

~~~~~~~~~~~• -~~~


Let ~~~ be a sufficienly large prime nrmb er such

that

2 M+1 ? 21 = 1,.. .,N

and

a 1.lnP. + lnPM÷l > 0 j = 1,...,N

using (I P ’) , the resulting knifedge problem (K ’) will -•

have nonnegative constraint coefficients. In practice

it will usually be more productive to achieve the same

result in another manner. Suppose the constraint

coefficient of X
3
is negative. Then, if U

3
is an uppe r

bound for X
3

(in practice an upper bound can usually be

assumed), X
3

may be replaced by U
3

— X

3

. This, too,

will result in a kn i fedge fo rmula t ion with nonnegative

constraint coefficients.

Consider now (K) , the Knifedge in terpreta t ion of a

• general integer programming problem. For ease of

notation we write (K) as

121

(K) Mm c3 x 3i— i
N

St ~~~~~ = b
3=1 -~ ~~

X

3
~ 0, Integer j = 1,... ,N

In general (K) can be quite ditficult to solve.

Since linear p rog r amming (and other) relaxations tend to

be very weak due to the equa l i ty constraint, it appears

to be desirable to avoid rela xation procedures.

Alternatively, shortest path and dynamic programming

of fe r solution techniques wh ich avoid this problem.

Assume for the mom ent tha t the coefficients
~~~

, ~ of (K)

are integer. Then (K) may be interpreted as a shortest

path problem. Let G = (V.1) be a directed graph with

vertex set V = (0 , 1,2 ,..., b) and arc set A = (( i , k):k—i

= for some j, j = 1,.... ,N) [Ga r f i nk el  & Ne mbause r

(1972) ). Then solving (K) corresponds to finding the

shortest path in G. Note that if ) 0, j = 1,.. .,N,

the graph G contains no cycles, since a 3 > 0 for all 3

implies that if (i,k) is in A, then k > i. We will

always assume > 0 in (K) without loss o~ generality.

Then (K) may be represented as an acyclic shortest path

problem.
4

122



5.3 Numerical Considerations — Finite

Approximations to the Logs of Primes

In section 5.2 we have assumed that the coef—

ficients ~ ,5 of (K) are integer. In practice this is
3

reasonable since any computer implementation will

require the use of rational numbers.. However, our proof

in Section 5.2 that  (K) is equivalent to (12) depended

on the use of the exact logs of primes. (K) with

irrational coefficients a3 , S may still be represented

as a shortest path problem.

Let G = (V ,A) be a directed grapn with vertex set V

= (v:v = 
~~ 

~~~ and v~ ~ where S ~~~ (1,2,...,N ) ,  X
3

> 0 ,

• integer) and arc set A = ((i,k) :k — i = for some j =
• 1 ,2,...,N). Then solving (K) corresponds to f inding the

shortest path in G. Note that each variable 1
3

jfl (12)

corresponds to an arc X’ at each vertex v.. Therefore,

choosing an arc X~
’ to be in the path is equivalent to

incrementing by one the value of the variable I • We
M

define the SPAN of an arc X4 to be a4 = ~ a,, lnP
J ~1 J~J

(The natural concept here is one of . length —

unfortunately early practitioners with shortest path

problems gave the word length another connotation,

123

• ~—~~— • • • _-—.—~.,- - __ _. •--_~ -- -_ -_-__ •_——-_- •-——• • _ • . - - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• — •- • •- • • • •



I
1

namely cost). We define the span of a path to be the

sum of the spans of the arcs making up that path. The

span of a node is simply the span of any path reaching

that node.

In practice it is not possible to use the exact

logs of primes. Are we then, justified in solving (K)

in place of (IP)? Consider the following reformulation

of (12).

Let p~* = ( 10tj~p )  t integer

where (a] = largest inte~er less than or equal to a.

Let a~ = a
13 P~ +

b* = ~~~~~ b
1 

P
~~~ 

+ BP~~1

Then
N

(K*) fin D C X .
3=1 ~ 3

N

st ~~~a* I =b *t j—i i 3

• 4x3 ~ o, Integer j = 1,..., N

124 .
-

is a relaxation of (12). Moreover it is a relaxation

which can be made a rb i t r a r i l y close to (K) in the

natural sense by choosing t large . (Another way of

t ightening the re laxat ion (K*) would be to use surrogate

duali ty (Glover (1968 , 1975) , Greenberg & Pierskal].a

(1970) , K a r w a n & R a r d i n (19 76)].)

Proposition 5.1: If we assume X is bounded in (K) ,

then by approximatin~I the irrational coefficients ~~,b

of (K) closely enough by rational numbers a~,b*; (K)

may be refornulat~d as an equivalent knapsack problem

with rational. coefficients.

Proof: If we assume the variables I are bounded ,

X C S = (I: 0
~

. I
) ~~ U

3
, X~ Integer, 3 = 1 ,...,N), then S

is finite. Let 3’ = (I C S: aX ,‘ b). For any X C 5 1 ,

(~X
— S) ,& 0, so there exists a cS > 0 and a neighborhood

such that the absolute value of (aX —
~) is greater

than 6 > 0 for all a c N
~~
(ä) . Then there exists a

neighborh oo d Ny (S) such t h a t aX ~‘ b for all a in N
~~

(a)

and all b in N x (fi). Let N (s) = fl N x (~
) and

x C s ,
N (s) = fl N

~~
(b) . Then aX ~ b for all a C N (s) and

_ xCs’
b c 11(b) and X c S’. Consider a set of rational

coefficients ((ak,bk) c RN~~: ~~~~ rational, 3 = 1,2,...,N;

125

k = 1,2,...) converging to (a,b). Then all but a

• finite number of problems

(pk) fin CX

N k k
St a X . = b

3= 1 ~

define problems equivalen t to (K). Consequently by

choosing t large enougn (but finite), (K*) will be

equivalent to (K).

The advantage of (K*) is that the size of the

shortest path problem (b* nodes) may be controlled by

the user. By properly choosing t and the base of the

logarithms, b* can be chosen arbitrarily.

By choosing t large we may approximate (12) or (K)

very closely. How does (K*) differ from (K)? To answer

this we must develop a bit of machinery. Consider now

the shortest path interpretation of (K), the knifedge

representation of (12). Choosing an arc X to be in the

path corresponds to using a certain ancunt of resources

in the original problem (12) represented by the vector

A~. We shall prove in Proposition 5.2, that a path of

126

~
w- -

fl
-

span P corresponds to a unique vector of resource

utilization in (12).

Proposition 5.2: Consider an integer programming problem

(I?) and the corresponding knifedge proble m (K) with its

shortest path interpretat iofl. Consider two sets of arcs

• S
1

= (X ”k:k = 1,2 ...,k1 3 and S2 = (X~~~:k =

If the two sets of arcs have equal span,

4 k k1. M 2 N
i.e. E ~~ ajj in~~ = E ~ a~h lnP1k=1 i=l k k=1 i=l k

th en they must cover precisely the same rows the same

number of times each, i.e. they must correspond to

precisely the sane resource vector.

fi~~

Proof:

M M
E E a j. lnP~ = E E alh lnP~k=]. i=l k=l i=1 k

Ic 1 M N

11 :[T ~~~ 1]j ~ = [J H ?ih k
k=l i—i . k=1 i=].

Ic1 k
2

M E a M E a.[1 ~~~~ = [J 2k=1 ~~k

1=1 i=].

127

• •-- •

k
2

k=1 k=1= P1
k

2

=> E a1 = E alh i =
k=1 k=1 k

• • (since a
13

Integer)

QED

The proof of Proposit ion 5 .2 depend s upon the use

• of exact logs of primes, consequently, (K*) is only an

approximation of (K) since it is possible for a path oz

span P to represent more than one vector of resource

utilization. It is the case that two paths S 1 and S2 in

the shortest path representation of (K*) having the same

resource utilization

M M
i.e. a E ~~aX~cS1 1=1 X E S 2 1 1

will have the same span

i.e. a13
P~ = a13 P

~

128

II
— ••.— ~—-i-.- — •

~~ ~
—.— -‘~• — .•- - =—•

Where (K*) fails is that it may find an optimal

solution S that is not feasible in (12). That is, the

utilization vector of the path corresponding to S may

not be equal to b, the right hand side vector in the

constraints of the origina l intege r programming problem.

This is because, due to approximating the logs of

primes, two paths of equal span may not correspond to

the same utilization of resources vector. We regard

(K*) as having a resolution problem . With t very small

(say 3) the nodes of the shortest path representation

tend to become blurred together and the algorithm may

perceive two actually distinct nodes as being one and

the same node. Increasing t increases the algorithm ’s

power of resolution.

• This suggests a method for solving the relaxation

(K*) in a manner that ensures it will be an equivalent

problem to (IP) . Suppose (K*) is being solved as a

shortest path problem by a forward reac~ing algorithm

(e.g. Algorithm 3.2). At a node (with span) j we check

each arc originating at j. Let the first arc be i.

Then arc i plus the path to j form a path to (j + span

of arc i), (say k). If node k has a label less than

infinity, we now require that the algorithm check that

129

L-_ --___ • • ••

~~~~~~~~~~~~~~

.•-•- • - • •

~~~

••-• - ‘
4

• _ _ _ _ _ _

the incumbent path to k and the new path (to 3 then k

via i) have the same resource uti l ization vector. If

they do, we proceed as usual. If they do no t, then we

arbitrarily give the new path (to 3 then k via i)

span Ic + 1 and begin again with arc i. Provided

t is reasonably large, this method should resolve all

but the most pathological cases. In practice we have

used t = 11 or 13 and have not used the above refinement

to our algorithm as its compu tational burden is very

high.

It is also possible to interpret (K*) from a

geometric point of view. In the kn ifedge problem (K)

the constrain t N
•

X = E
3= 1 3 3

represents a hyperplane H in RN. In all of i~ the only

integer points in H are tnose that are feasible in (12).

And H includes all (IP) feas ib le integer points.. The

constraint N

a*X = b *
3= 1 i i

in (K*) may be seen as a hyp erplane 11* approximating H.

11* is an approximation in tha t it still contains all

(IP) feasible integer points but may contain additional

integer points as well. Consequently, it is a tilted

130 .

version of H, whc r~ 11* haf. b~~n Lotated slightly about

the ax i~. whic h i.~; the aiti.n’~ ~;ubset of defined by l 16t

constraints of (.2) . Since H is a finite distance from

all (12) inferu.~ible integel poiut :~ it way be ro tat~ d a

finite ctmouz it about thi~; axis without including any

non—f c•a’~i b1 integer point :~. Thi~; corre_ .pond : exuctly

to choo~i :ig t large enough that 11* totates littit., enough

to include h o n oa — feasil ,le iz *t C ’j et I.Oi~~t.S~

• 5. q Induced Linear OlderinF; in C c m b i n ~~~oL iai

Prob lem s

• The tran~ foriiiation whici~ took us li - un (lP) to (K)

may be looked at as one t h at i nduc :. a l i n e a L oLdering

on the ~;et of part ia l solut ioxi ~ (~ :X (X
~

,. . .

Ic I N) . More preci~;id y, it m t y be ~; e n as induciny a

linear on~ —to—onv mapping from the vectors A in zM in

resourc ~ipac to t h e real numbers.

p :ZM > R

M

2(z) = z lnP
i—I ~

M

2(A 6) La a~4 lnP1J F~1 J

I 3 L

a

Consider a partial solution IC to (12), X = (X~ ~ 2

where for ease of notation the variables

have been reordered so that the variables with assigned

values (i. e. in the partial solution) are 3 =

1,2,...,k. Then X uses a certain amount of resources ,

namely

i =

or equivalently,

k

~~~~ A . X
3 3.1=1

Consequently, we can extend the mapping P to map

(part ial)  solutions of (12) into the real numbers.

k
= P(  ~~ A~~~~)

3=1 i i

k

= P ( A 4 )X
3—1

k M

= ( a 1 lnP 1)~3— 1. 1=1 3

132

__________________



This extended mapping, P, is not necessarily

one—to—one since two different partial solutions may

have the same resource util ization vector. It is this

fact which may be exploited.

Consider a decision tree as normally developed in

branch and bound procedures for integer programming.

See Figure 5.1. For example branching may be binary (X
3

= 0 and IC
3 

= 1) for 0—1 integer programming problems. It

is characteristic of branch and bound procedures that

each node k corresponds to a p ar tial solution to (12).

Consequen tly,  our extended mapping can be considered as

lapping each node to the real num bers ~~(k)). In other

words we are able to induce a linear ordering on the

nodes of the search tree. See Figure 5.2.

It is very often the case in branch and bound that

identical subtrees are generated over and over again.

This occurs when two node s (or par t ia l  solutions) ,

neither one descended from the other, have the same

resource utilization vectors 
. 

-

i.e. Ea ij!j i =
X

3
E:i

133



I

-4

•
>4 —

-4

~0I 0
•6•lc..I

o Iim
• —I

wCl)

C,’

-.4 w• ‘-4 1.4
U 

I 
~~~ 

w
—

k 6

-4 .*
uo
(‘1

• >4 0
— U 1 . 4 4~0 1 . 4

• “ .4 t~>4
-4

j

-

134

~

.

~~ ~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~ •~~~~~• -- •

-4

a)
a)

—4 14• • 1.4
a) in.

C.,’

I)
a) U

-4 0 ’ øz ~H

if
a) a)

0

~~~~~ 
a)

a) .~~,~~~ 1J• 0 r1
— ~rI ‘~~

-~ W r 1
II 4J
~~~~ r4
.1-I 0

14.4 aio ~J.1,’UW e
— 4J

a)
o ~1 .0

U) a)
$4

1 . 4 0

l~~ I~~ I~~ I~~ i~~ i~~

j
l~~

135

and the same set of unassigned variables.

This duplication of effort is highly inefficient.

However, attempts to avoid it [Narsten & ?lorin (1978)]

have required saving an H dimensional resource

utilization vector for each node generated using a new

combination of resources. The mapping P makes it

possible to achieve the same end by storing a single

number for each node generated. Consequently, the best

properties of branch and bound technigues and of

• shortest path methods may be combined into a single

procedure.

Consider a shortest path problem derived from the

knifedge interpretation of a 0—1 integer programming

• problem. The advantage of using a shortest path

algorithm (for example Algorithm 3.2) is that it tends

to minimize duplicated efforts. The reason for this is

that only a single path is generated from the origin to

each node. Consider the case in Figure 5.3. (Note that

each variable in the original problem corresponds to

an arc IC at each node v.) There are two distinct paths

to the fourth node, (X~) and (X~ Xi). In the shortest

path algorithm the path from node 4 to the end is

136

—~~~~~ -~~~~~~~~~~~

—I

a)

•1~~
• in.

‘-4

1.i eo

00 14.4

in.
— C..,

.

~~ I~>4
~~~~a)

o
14 44
P . O
4.4 0>4 e.i W O O

‘P4 >4 In
• I ~‘ U  a) a)

~ p r-i 14
H a )

1.1
— P4
I 1 4 0

-4
in. O C..,

• >4 -P4
>1 a)
‘-4 P4

a)
~14 a)

0 —  o
>4 

iP4° 

C.4 

:

137 .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


• considered only once. But in a binary search tree where

is the separation va riable at level 3 (see Figure

5.4), the path f rom node 4 (of the shortest path

representation) to the end would have to be considered

twice (from nodes 8 and 1.3 in Figure 5.4).

If we were to use the mapping P, the decision tree

of ?igure 5.4 could be redrawn as in Figure 5.5, where

the height of a node in the decision tree indicates its

position in the linear ordering induced by ~. Nodes

• h aving the same i~eigh t can be recognized as having the

same resource uti l ization vector. Nodes at the same

height and the same level are equivalent (i.e. they

have the same resource utilization and same set of

assigned variables). The subsequent development for

them need only be done once.

The advantage of the branch and bound procedure is

that we are likely to find a feasible solution early on

in the search. We can then use this incumbent solution

to bound other -n odes. Host shortest path algorithms, on

the other han d , do not generate a feasible solution

until the procedure is very near to its conclusion.

Methods have been devised to eliminate this shortcoming

‘I’

-4

I
t — a• I

m —
>4

‘-I
‘0—4

I U
‘0• C,’ •rl

>4 0 a)
cv.)

I — 0Q
>4

‘-4,0 P

P 4 W
-4

U 0 r1 .rI
a 1.4I a)

>4
C,’ 1.4

>4
0 0
$4 .,.’

P4 Pa)
1.4 14
a) a)

• C/) •t-) In
a) ,-l a)

14 .~ a) $4
U p
aDa) a)~~~~ -P4

-

-4

—
‘.4

o cv~
co~~~~

f
U

o
I
m

>4

• 139 -

_ _ _ _ _ _ _ _ _ _ — • •• -

“V 0,

“V ‘.-v

Bei:ht
(x l~

_ o
~

1
~
1
~~x2 _ o ç x3 _ o

-

I

~~
(1
>1:

0

4

— 1:

() X3 — 0
, 1 3/~/

x3 — 1

/

• The Decision Tree of Figure 5.4 where the Height of a Node
Indicates its Position in the Linear Ordering Induced by ~

Figure 5.5

140

• _ I
L ±~ ~~. ~~~~~~~~~~~~~~ — • — ---- -— ~~- --- - - - ~

- - -
~~~--~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

of shortest path a lgor i thms ( Shapiro 6 Wagne r (1967) ,

Glover (1967), Shapiro (1968) ). For example, if

Clover ’s algorithm is interpreted in a shortest path

context (it is developed as a dynamic programming

recursion technique) it can be seen to be equivalent to

a shortest path algorithm that bounds any path which

becomes longer than  the shortest path.. With the mapping

F it is possible to develop an algorithm equivalent to

Clover’s which will work on any integer programming

problem.

• 5.5 Applications to the Set Parti t ioning Problem

In Section 5.4 we have indicated how the use of

• prime numbers might  expedite branch and bound procedures

for genera l integer progra mming problems. For the set

partitioning problem , because of its special properties,

we can do much better .

The first property of set partit ioning problems is

that the variables may be constrained to be 0 or 1. In

practice, though , it is not necessary to consider the

upper bounds since the constraints  themselves do not



- -

allow any variable to exceed one. It is true for all

0—1 integer programming problems that partial solutions

correspond to subsets of f1,2,....,N) where X corresponds

to S = 1). Then if the set partitioning problem

is (SP)

N

(SP) fin C .X.
j

N
St a 1 X . = 1 i =

j = 1

X~ > 0 , Integer 3 =

where a1~ = 0,1, the knifedge repre sentation (KS?) is

N
(KS?) f in  C IC .

H
N M M

st 
~~~~~~ a1 lnP~)X = ~~~lnP1• i— i 1=1 f i—i

x~ > 0, Integer 3 =

As shown in Section 5.3 (KS?) may be interpreted as

a problem of f inding a shortest path on a graph C = (V ,A)

14 2

1~
_
~~

-
-~~~~~--_ — ~~~ ~~-- -— ._- — --_-— -- _ -.-

~~- -__ -

where V = (v:v = a1~~lnP1) X ~ where
j cS 1=1

S ~~ (1,2 ,.... ,N) and = 0,1)

i. e. where V = (v:v = a1~ lnP~) where
jcS i 1

S c (1,....,Nfl~.

Consequently there are at most nodes or vertices

• on the Graph G.

Another characteristic is that all of the coef-

ficients of the constraints are either 0 or 1. The

right hand side is all ones. Consequently , the only

nodes which need be considered are

Vs = (v :v = lnPj where T ç. (1,..... ,M))

This is because these are the values of v which

correspond via the one—to— one mapp ing P to feasible

resource utilizations in zM . Consequently , there are at

most ~i~~ 2 N ,2M j nodes or vertices on the graph C.

143

— - • -- • • -~~~~~~~- •

• ~- -~~~
~~~~~~

lie can ma ke further use of the logical implications •

of the set partitioning problem. We begin by reform-

ulating the Principle of Optimali ty in terms of

• shortest path problems.

Let X = (X”1 ,~~~2 ,...,X ’
~k) be an ordered optimal path

-‘2
in the shortest path repre sentation of (KS ?) , the

knifedge reformulation of the set partitioning problem

(SP). The 31’” ’3k are all unique, so we suppress the

superscripts v with the understanding that each arc XI ii
• begins where the previous arc ends. Then IC =

1—1
(IC , . . . X  ) .  The set X* = (1 4 :1 4 = 1 for  all IC c I ,

~

= 0 otherwise) is an optimal soluticn to (KSP) and

• (SP). A SUBPATH X of X is the ordered subset of the

first P elements of i, ~ = (X 4 ,X.’ ,....,X ), p ~~k.p ‘l ‘2
Note the elements of must retain the order they have

in !. !p corresponds to a partial solution 1* of (SP)

vhere = (X~ :X~ = 1 for all IC c !~, IC undetermined

otherwise) .

Principle of Optiaality: An ordered optimal path X =

(IC ,...,X ) to a shortest path problem is said to

satisfy the Principle oi Optimality if and only if any

ordered subp ath f = (I ~~~••~~X 3 
), p~~ k, has thep p

144

_ _ _ _ _



property that it is an optimal path for  the nodes it

covers.

Notice tha t  some order ing of (X . ,X .  , ..., X .  ) is a
3 ] 

~2
solution to the shortest path problem which can be

generated by usual techniques (e.g. Algorithm 3.2).

However , in general it is not the case that an arbitrary

permutation of U. ,X . ,...,X .  ) will satisfy the
~~~]. ~~~ 2

principal of optimality. Consider the problem

fin I1 -e 12 + 313

St 11 +21 2 + 3X 3 4

X) = 0,1 3 = 1,2,3

The optimal solu tion is X~ 13 = 1, 12 = 0. The

corresponding optimal path to the shortest path

in terpre ta t ion is (X 1, X 3) . This permutat ioz~ satisfies

the principle of optimality. However , the permutation

(13,11) does not since (1
3

) is not an o~tiwal subpath

((X1,X2) is a better subpath). Consequently, it is not

the case that an arbitra ry permutation can be generated

by the usual shortest path algorithms. However, it is

the case for set partitioning problems that any

145

.•• _ - • •
~~~~~~~~

- - • • - -- _ _ _ _ _ _ _- - • - - - -_ _ _ _ _  •

L

~

•-

~

— —_ -—• — —~~~~~—~~~ - ‘-- -—— _—~~~~~ -~~~~ — ,—- —
~~~~~~~

—-

permu tation of an op timal answer will satisf y the

principle of optimality.

Proposi tion 5.3: For the set partitioning problem (5?)

and the corresponding knif edge problem (KS?), any

permu tation of an op timal answ er will satisfy the

principle of optimality with respect to the shortest

path interpretation of (KS?)

Proof: Consider a p e r m u t a t i o n ~ = (X. ,X. ,..., X .)
~~~ ]. ~~~2

of an optimal solution to (KSP). Consider a subpath

X = ( IC . ,X .  ,..., X .  ), p .~~~ 
k, with span P. Suppose

— 

J ], 
~2

• is not an optimal path with span P, but rather

= (T i ~~ 
‘ • • •

~~~~~~~ 
) is. Then by Proposition 5.2

and the fact that no row of the original set parti-

tioning problem can be covered more than once, we have,

fl (X \X~) = .0. But then U (~C \~~) is a better

solution than ~ to the original problem , which

cannot be the case.

QED

I

146

—.4

Proposition 5.3 is very powerfu l . It allows us, in

advance, to order the optimal solution in any fashion we

choose. We choose to order the arcs of the solution

according to the row containing their first entry. Then

at any node of our shortest path algorithm we need

consider only those arcs which begin at the first

uncovered row. And of those arcs we need consider only

those that do not conf l ic t wi th the shortest path to the

node being considered. This drastically reduces the

number of nodes generated.

Consider the following algorithm to solve a set

par t i t ion ing problem (SP) .

Alg orith m 5.1:

STEP 1 From (SP) form the cor responding kni fedge

problem (KSP). Interpret (KS?) as a shortest path

problem where the number of nodes is

M
~~ in? .
i=1

1147

- • ---~~~~~~ - --- --—-— --
~~~~~~~~~~~~~~ —4



- 
_ 

where P~ is the ith prime number , and the span of each
V -arc IC . is

~~~ 
a~~~lnP~ .

STEP 2 Solve the shortest path problem generating

nodes as needed. A node is characteri zed by its span

from the origin , which is given by the sum of the spans

of the arcs in a patn reaching it. At a given node

consider only the arcs which begin in the first row of

(SP) not yet covered , eliminate those which conflict

with the path to date.

We tried implementing Algorithm 5.1 and found that

it was very sensitive to problem size. Small set

partitioning problems were solved with great speed. A

test problem of 30 rows and 168 columns was solved in

less than two seconds of execution time on a CTBEfl 175,

generating only 2314 nodes. However, the same problem

with ten additional rows and 103 additional columns

generated more than 20 ,000 nodes (in 7 seconds) and was

aban doned (it was approximately one-half of the way
4

through the problem) .

148
-

_ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _

• • 5.6 Applications to the Helsinki Problem

In con3unctioii with the HELSINKI algorithm ,

Algor i t hm 5.1 is very p o w e r f u l . The i terat ive

backward—forward shortest path Algorithm 3.3 plus

subgradient optimization allows us to eliminate

variables at each node which cannot be eliminated by

logica l considera t ions alone. Our experience has been

that 75~ of the variables can be eliminated at the first

level of the decision tree (i.e. when only one variable

has been chosen to be in the solution). This makes

Algor i thm 5.1 very a t t rac t ive as a “relaxation” in the

two duty period scheduling problem. Our practice has

been to use Algorithm 5.1 when the number of variables

remaining in the problem falls below some number

(between 60 and 120). Algorithm 5.1 is very useful in

cleaning up small problems which very often require a

significant number of brancnes otherwise. Algorithm 5.1

may also be a good relaxation to incorporate into

implicit enume ration algorithms for solving general set

partitioning problems.

An additional advantage of the Knifedge relaxation

is that it makes it very easy to handle certain side

149

~

constraints. We incorporated the constraint

N
EX .~~~~~Kj =].

This may be done by adding a slack to get

N

E IC3 + S = K -

j=i

mul t ip ly ing the cons t ra in t by 1
~~~M+ 1 

and adding it to

the Knifedge constraint for (IP). Then, however, the

arc S mus t be considere d at ev ery no de an d the pa th is

significiantly longer (by K1nP M+l). There is a way in

which this constraint can be implemented logically so

that the path is shorter rather than longer. At each

node Algorithm 5.1 checks to see if a feasible solution

has been found by finding the f i rs t  row not covered.

Consequently, whenever a feasible solution is found the

path ends there and the solution is recorded if it is

the best so far. If the current node is not a feasible

solution, that is there is a row < f not yet covered ,

then the number of arcs in the path to this node is

checked. If it is equal to K , the node is fathomed. In

this way many more nodes are fathomed along the way and

the arc S is never considered.

150 
-



i~e have used the Knifedge relaxation in the two

duty period scheduling problem and have found that it

s ignif icantly reduces the runn ing  time (5 — 30%). In

addition it gives the capability of more easily

considering side constraints.

5.7 Applica tions to the Set Covering Problem

An algorithm simila r to Algorith m 5.1 can be

developed for the set covering problem (SC)

(SC) fin CX

St AX~~~ 1

x = 0 , 1

whe re a 13 = 0, 1; C > 0.

Consider the shortest pa th in terpre ta t ion of the

knifedge formulation (KSC) of (SC) . We show that  any

permutation of an optimal solution to (SC) will satisfy

the  principle of opt imali ty .

151



——- -~~~ • . • _—~~~~~~~• • -- •_ — -  - _

---—--_

_- • • -~~
---

~~~~~
--- •

Proposition 5.4: For the set covering problem (SC)

and the corresponding knifedge problem (KSC) , any

• permutation of an optima l answer will satisfy the

Principle of Optiuiality with respect to the shortest

path interpretation of (KSC).

Proof : Consider a perm u tation X = (X. ,X . ,... ,X.)
~~

of an optimal solution to (KSC). Consider a subpath

X = (X . ,X . ,..., X.) , p ~ k, with span P. Supposep)
] ~~2

~
is not an optimal pa th with span P . but rather

= (IC1 ‘~~2
~~~~~~~~ ~ 

is. Let C fl (X\X ~~ ) .

Then X~ covers rows of (SC) already covered by X~ by

Proposition 5. 2. Then (X\ X~) is a solution to (SC) better

than X , which cannot be. Therefore, T~ ~ (X\~~) =

which implies Y
~ 
U (X\X~) is a solution to (SC) better

tha n X , which cannot be.

QED

The following algorithm will solve the set covering

problem.

152



Algorithm 5.2:

STEP 1 From (SC) form the corresponding knifedge

problem (KSC). Interpret (KSC) as a shortest path

problem where the number of nodes is

E lnP 1

where P is the ith pr im e num ber, and the span of each
1.

arc IC” is
3

M

E a1~ lnP..
i=i

STEP 2 Solve the shortest path problem generating

nodes as needed. A node is characterized by its span,

which is given by the sum of the spans of the arcs in

a path reaching it. At a given node consider only the

arcs which cover the first row of (SC) not yet covered.

We show that Propositions 5.3 and 5.4 are special

cases of a more general result.

4

153



• - _ _ _ - --_ -._
~~~~~~

_ • , - - • -•~~~~~~ --- ~~~~~~~~~~~

Proposition 5.5: For the integer programming problem

(I?) with no upper bounds on the variables and the

corresponding knif edge proble m (lIP) , any permutation of

an optimal answer will satisfy the principle of

optimality with respect to the shortest path

interpretation of (KIP)

Proof: Consider a permutation X = (XYi ,...,X~k)

of an optimal solution to (lIP) . Consider a subpath

— V i V . —

IC = (IC. ,...,X .~~), p ~ k, with span P. Suppose ICp J
p

p

is not an optimal path with span P, but rather

= (T~~1 , ., Y~~t) is. Then U (X\~~) is a

solution to (F.IP) better than ~, which cannot be.

QED

Note that the proof depends upon the variables

having no upper bounds, otherwise Y
~

U (X\X~) may

violate an upper bound on some The result does not

hold generally for problems where the variables are

restricted to be 0 ,1. However , as we have already seen,

in the set partitioning problem the variables need not

be constrained to be 0,1. Similarly , for the set

covering problem with C > 0, the variables need not be

154

bounded above. Consequently, Propositions 5.3 and 5. 14

follow immedia tely from Proposition 5.5.

Simi lar ly , for any 0, 1 integer programming problem

whore the constraints force the 0,1 condition,

Proposition 5.5 holds. An example would be a problem

where each 0,1 variable is included in a multiple choice

constraint of the form

~~
x
i = 1

j C S

where S c (1,...,N).

155

_ __ _ _ _
_ _ _ _ _

I

CHAPTER 6

THE GENERAL TWO DUTY P ERIOD SCHEDUL ING P R O B LEM

The general two duty period scheduling problem (P)

is given by

• (P) fin CX

St AX = b

X Integer , Nonnegative

where each column of A contains at most two segments of
ones , the rest of the entrie s being ze ro.

4 As developed in Chapter 2 , (P) may be reformulated
as (P*)

(P*) fin C~ Y + C~ Z

St (Y ,Z) in S

IY — I z = 0

Y ,Z Integer , Nonnegat ive

156

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

S

where S is the set of solutions to a network flow

problem.

Nuch of the methodology developed it chapters three

and four may be simply modified to fit the more general

two du ty period scheduling problem . The relaxation now

is a network flow problem rather t han the shortest path

problem.

For the same reasons tha t the shor test pa th was

acyc lic, the network flow problem will also be acyclic.

Consequen tly, we still hav e a reasona b ly easy relaxation

to solve. However , in the ca se of greater than or equal

to constraints the network flow problem will no longer

be acyclic.

The ma jor dra wback wi th the general two du ty period

scheduling problem is that we are not able to make such

extensive use of logical reduction. Much of the power

of the HEL SINKI a lgori thm came f rom the fac t tha t once
H an arc was chosen to be in the shor tes t pa th, we were

able to eliminate all arcs which cor~flicted with it. In

the case of the network problem this is not true.

However , some logical reduct ion may still be useful .

• 157

—-~ -~ - -~ -—~ - —
~~~~~

-
~~~~~~~~~~

__-•—
~~~~~~~~~~~~~~ - _ _ • • • - • - - -

~~~~~~~
_ -

~~~
-
~~~~~~~~~

- - -_ -

Consider the case where a11 ~. 0 for all elements a11 of

A
1
(i.e. there are no surplus variables). Suppose we

have chosen enough arc flows (IC1, j in 3) in tue network

flow problem such that the ith constraint is satisfied,

i.e.

N

E a1 IC
1~ 1

• Then we can eliminate (set equal to zero) all other 11
1s

(j not in 3) such that a1 > 0. And of course we are1 4
stiLl able to eliminate the par tner of any eliminated

arc.

We can also use subgradien t optimization in a

completely analogous way.. ‘We start by solving the

network relaxation. Then by the use of subgradient

optimization we reallocate the cost of a variable

between its two decoupled arcs in such a way as to make

them more nearly equally desirable. This is done by

increasing the costs of those arcs which were included

-
• in the network solution but whose partners were not

included. Simultaneously , we reduce the costs of the

unincluded partners by the same amount..

158

One thing that will have to be done differently

with the general two duty pen -ad scheduling problem is

the branching procedure in the tree search. Rather than

using as a separation variable the first arc in the

shortest path relaxation solution not already used as a

separation variable, we will ha ve tc choose a branching

procedure adapted to the network relaxation.

159

_ _ _ _ _ _ _ _ -~~~~~ ~~~~
--

~~~
- - -~~~~~~~~~

-
~~~~~~~~ 


1

CHAPTER 7

COMPUTATI ONAL EXP E RIEN CE

In this cha pter we prese nt our compu tational

experience with the HELSINKI algorithm. In Section 7.1

we discuss the test probiems used. We follow this with

results on the logical el imina tion of variables an d

results of the subgradient optimization procedure. In

Sections 7.4 and 7.5 we present conFutation times for

the test problems with and without a side constraint.

Decision trees for the two smaller test problems are
-

given in Section 7.7. Section 7.8 provides some results

of the prime number — shortest path algorithm for small

test problems. -

7.1 The Test Problems

Our computational experience has dealt with the g
Helsinki problem discussed in Chapter 3:

160 •

•

ii
• _-•

•~~~~- - • _ -_ • -.- ——- •-I—
~~
.

~~~
. —4



(HP) Mm CX

st A X 1

IC = 0 ,1

where each column of A contains at most two segments of

ones, the rest of the entries being zero. (HP) is a two

duty period scheduling problem. It is also a set

partitioning problem and , consequently , good methods

already exist for solving it. Our intention was to test

our method for solving the two duty period scheduling

problem by consid~ ring first the Helsinki problem. If

we were able to obtain results comparable to the best

existing set partitioning algorithms, then Algorithm 2.1

should provide a reasonable method for solving the more

genera l two duty period scheduling problem

(P) fin CX

St AX = b

X In teger , Nonnega tive

for which no good solution tec~uiiques exist.

The test problems used in eva luating our HELSINKI

algorithm were sent to us by Markku Tamminen of the

161



• -~~~

Helsinki City Transport. The four test problems have

roughly  the  same size but va ry ing  densities. See Table

7.1.

Problem 1 was the original Helsinki test problem

and has been studied rather thoroughly by us and others.

Tamininen tested a numbe r of set partitioning algorithms

on problem 1 [Koijonen & Tanminen (1977) ]. These

included the Garfinkel-Nenhauser algorithm and Marsten ’s

set partitioning algorithm , SETPAR. In addition

Tamniinen tested numerous variations of the Garfinkel—

Neinhauser algorithm , with and without linear programming

• and taking advantage of the special two segment

structure of the problem. His conclusion was that

SE TPAR outperformed any other method they could devise.

Throughout this chapter our results with the HELSINKI

algorithm will be compared with SETPAR , it being the

best known existing algorithm for solving the Helsinki

problem.

162

—-_

~

--— ---- - --~~~~~~--- --~~~~~~
- - - - - ---- -—--—-• - • -_ -

~~
- - - -  - -  - -  - - •- • - _ - ----•



0

-4a)
Cl I-I

H‘-a

-~ z
_ c v ~ -~~ -I-I
- 4 -.0- -~ 0

1.1

-~~~~~~ ~~~ 0
Cl) r— cO in a)

• a)
H $4

~~r4
U)

H ~~~~~~~~~~ U)
C!) • .. Cl I...

%O -~ in 00 — ifl

— a)
).i
00

00kb . - c o o
a) (0
.0

0 5 ) 0
D41 ~~~~~~~I C O C O ’~ P. . . •  0 O~~~.,-I
HJ -

~ 
- * -~ -iJ 0)0

W a )  CI
0I ‘-I,-4 .rl t.~ ~~ .0

(‘4 ~-. ..t ~~ ~ .
~ (1) ~~ P.. 0

1-4
p4 0 (fl a’ -~ 4J p4-I 11.4 p4
H CO ‘0 (“1 in ,-l ~. 0 0

~ 1—— 0’ 0 
~ •c~ — 5)CO Cl

— .
~~~4J 00 00 Cl

(0 60 r-4 .~53 p 4 0) ~.J 1.4 $ 4 1 . 4
a~ in m a’ to o ~~ p P 0 .rl 1.4

(D ‘0-s ~~ Cl Cl b 0 $ 4
00 ‘0 i n 03 -4 P €0 Cl U U i-I 0 0

— 0 $ 4~~~ $4 $4 €0 00 ti.
r1 00 r4 Cl 0)

~~ p. H (0 0)
o

‘ 0 C O’ 0 I - ‘4-I ~~~53 U) 5)
60 ‘-1 10 60

P ~-4~~~~ 60 11
0 0.. i~~~~ -4 0

‘0 Ifl CO ,.4 $4 r4 U) ~~ €14 ‘-4
1._I ~~~~4J

00 Cl P. 0 ~~ 60 r-
P P 41

o ,4 r4 €0 60 0 0 (0 a)
P1 0-C 0-C ~~~ 1’~ 5) H €0 E ~I-1 ‘4-I C)
1.J C’) 1C”1-4 U)H IJ 10 p4
-u-4 0 ‘00 -~ 41 P 10 .0 $-~

,.
~ C) Cl i-I

0) 4V) 0c1~~.t U) H I l 0 0 0 I’4
P Cl moo o ~4) —4 N. N. 0’ ,-4 0 Cl $4 Cl Cl 1.1 4.4 0
C) — 0 $ 4~~~~ 0.. Cl Cl -4

0 04 —I 0 0 P P 4.4
‘0 6 0 $ 4 1-I 1.4 0 0 *0
a) ~‘< $4~~~~W Cl Cl ~~l r 4 4.4
P 60 0 0 .0 ,0 4.4 4.4

.-I Ifl C’1 —I 0 5) Cl 1.1 Cl P..
‘0 ~~~~~~~U) 4 J Qa P.. .—4 .-4

a) in in -4- -4- P 0 r 4 Cl P 10 10 0 0 0
N ‘a ~~~4~~~~H Q C) 0 0 0 0 0
-i-I ~4~~4~~4~~4 .0

€0
••

‘—4 .. “ - ~~~~~~~~~~~~,0
1-4 0 .. 0 041
.0 4(’~~-~ $4 4) 0 0 0 ~)Ip4 0 0 0 4
0 04 N. 1 1(1)) I ~..1

~-4~~~~~~p.. p..l p.1
~~~~~~~~ : -00p.~ V3 H l-~I HI ~~~00

163 -

- •  - •-~~~ 
-
~~~~

- • - -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• • • •

7.2 Effectiveness of Logical Reduction in the

HELSINKI Algorithm

One of the main features of the HELSINKI algorithm

is its reliance on logic. to reduce the problem size.

This logical reduction entails two features. The first

is to eliminate any variables which conflict with

variables already chosen to be in the solution. The

second is to elimi nate any variables which can not

participate in a solution improving upon the best known

solution (the inc~imbent)

Our experience is that both of these features are

instrumental in significantly reducing the problem size.

Taole 7.2 indicates the reductions we have experienced.

Table 7.2 does not accurately reflect the number of

• variables which could be eliminated at each level. As

soon as a branch was bounded or found to be infeasible,

no more variables were elimina ted. In those cases one

hundred per cent of the variables could have been

elimina ted.

164



Level 1 2 3 4 Average

0 3.8 4.2 5.1 1.2 3.6
la 42.6 39.0 27.4 20.4 32.4
lb 89.8 70.5 62.6 81.5 76.1
2 91.6 83.5 75.5 81.9 83.1
3 90.2 87.6 79.8 81.7 84.8
4 88.6 87.7 81.1 63.7 80.3

Percent of Variables Eliminated at each

Level of the Decision Tree

Table 7.2

165 - 



At level one we have recorded the percentage of

variables for two cases. The first case, la, is the

first branch at level 1 (when there was no incumbent

solu tion) and the second case, ib , is for subsequent

branches (when there was an incumbent solution). The

difference in these two pe rcen tage s indica tes the

additional power gained fron the elimination of

variables whic’.i cannot take part in a solution better

than the incumbent. This elimination was achieved by

the forward—back ward iterative solution process for the

shortest path problem as described in Chapter 3,

Algorithm 3.3.

Note that, for problems 1 and Lt , fewer variables

are e l iminated at level 4 than at level 3. This

apparent anomaly is due to the fact that level 4 was

visited only when there was no incumbent solution or

only a weak incumbent (see Figures 7.1 and 7.2).

7.3 Results of the Subgradient Optimization Procedure

We found the subgradient optimization procedure to

be very successful in t ightening our relaxation. Recall

• 

• 

166 •



‘-I
0 — (‘-1 m

iiiii~ 
) ..c~i —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If’

N.
in

-4

- v-I

$4 N.
(-.4 04

SI
0 14
CO

a)
• 04
$4

H

N-
0
CO

-t
CO

N.
in
a’

167

-j

-I
~~~~ ~~~

-
~‘ I r - - ,  —

• \\\ \ _‘__.c.__) Il I

~~

i
a

~~~~~~~~

H

I1~ ~~

I

168

• ~~~• • •~~~~~~~~~~~~~~~~~~~
• - -

~~~- ~~~ -~ •~~~- ~~~
- - -  — - • -  

~
—-

--• - - ——~~ —- — ----—-- - --—
~~~~


1-~~~~
-- -

that the Lagrangean relaxation of the Helsinki problem

has the integrality property. Therefore, we know that

the subgradient optimization procedure can be expected

to converge to the linear programming relaxation

solution. In practice we were able to approximate the

linear programming solution as closely as we wished by

simply increasing the number of iterations in the

subgradient optimization procedure. The most difficult

aspect was determining the best numbe r of iterations.

We finally settled on a number of iterations (about 600

at level 0) which resulted in a relaxatior value within

5% of the linear programming value (see Table 7. 1). We

found that advantages gained by tightening the relaxa-

tion even further were more than offset by increased

compu tation times in performing the additional iterations

needed.

As outlined in Chapter 4, at each iteration of the

subgradient optimization we determine a new set of costs

for the decoupled arcs and then resolve the shortest
- .

pa th relaxation. The costs at iteration t + 1 are

computed by the following formula

c~
+l = C ~ + Pt

169

---- ~~~
-

~~

~~~~
-

where
pt = 1 if arc j is included in the current

solution and its partner is not

Pt = —1 if arc j is not included in the

current solution and its partner is

pt = 0 otherwise

pt was determined according to the formula

pt d t (W - W (U
t
) ~~ 15

t
1
2

There are two degrees of freedom in determining Pt

The first is the choice of the multiplier dt, and tue

second is the choice of the target value V. We have

tried a number of procedures for choosing the target

value. Our final algorithm incorporates many of them.

• We have found that at the very top of the decision

tree, before any subgradient optimization has been done,

the shortest path relaxation is very weak. Character—

istically, it has been on the order of twenty—five per-

cent ox the linear programming value and twenty—two per—

cent of the optimal value. If we were to use the optima].

answer itself as the target, the perturbation term
—

170



(dt (W — W ( U
t

) y Is t ( 2 ) in the equation above would be

very large. Our experience in this case is that the

subgradient optimization performs very poorly until the

multiplier dtis adjusted to compensat e for the large

( V  — U ( U t
) ). Consequently, at the top of th e tree we

use for the target value two times the best relaxation

value found so far. Similarly , at lower levels of the

tree, until an incumbent solution is obtained , we use

1.2  times the best relaxation value found so f at at that

branch.

A second alternative is fcr the user to set the

target value. In many real world implementations it

turn s out that the user has a very accurate notion of

what the optimal value will be. In such situations it

seems best to take advantage of such knowledge. After

trying a number of alternatives, we have settled for

using such a guess, if provided , only after the first

level of the decision tree.

A third alternative is to take advantage of the

relaxation value obtained at level 0 to set targets at

lover levels. This value closely approximates the

linear programming value~. There is wide experience

17].



• concerning the gap between the linear programming

solution and the integer solution. (Our experience with

these four test problems is that they have abnormally

large gaps — see Table 7.1.) It is possible to use the

relaxation value at level 0 of the tree in order to

approximate the value of the integer solution. This

appro ximation could then be used as the target value for

the subgradient optimization. In practice, the user has

the option of providing a Optimum/Relaxation ratio which

the HELSINKI algorithm will use to determine a target

• value for the subgradient optimization procedure after

level 0. If the user guesses this ratio to be, say,

• 1.30, the HELSINKI algorithm will multiply the

relaxation value, obtained by the subgradient

optimization procedure at level 0, by 1.30. The 
-

resulting value will be used as a target value for

subsequent subgradient optimizations and as an upper

bound on the problem . Once a solution better than this

target value is found it is subsequently used as the

target and upper bound.

As the value of the Lagrangean approaches the
t ~ t t 2

targ~ t value the perturbation term d (V — V (U ) 3/ I s I
becomes very small. It is, therefore, very difficult •

- 

172 -



for  the Lagraugean to exceed the target .  Consequently,

rather than using the incumbent, the best known solution

to the problem, as a target value; we have made a

practice of using 1.2 times the incumbent for the

target. We have found this to be very effective.

The second degree of fr eedom in determining P~ is

the choice of the multiplier dt. The theoretical

restrictions on d t are that at eacn iteration at be

between 0 and 2, that the sum of the d t~ s mus t diverge

and tha t d~ must go to 0 in the limit (Held, Wolxe &

Crowder (1974) ]. Our practice has been to start with dt

large, do a number of iterations and then reduce the

• size of d~. We continue in this manner until either the

perturbation term goes to zero or we have reached a

preset number of iterations. In practice, we do L

iterations with d t, then set L = L/2 and dt = dt/2 and

proceed. Both the initial L and the initial dt depend

on the current level of the tree (see Table 7.3). The

bubgradient process terminate s when dt is less than the

m i n i m u m  d t for tnat level. Below level 2 the parameters

are set as they are for level 2.

173

_ _ _ _ _ _  ~~~~~~~~~~ -~~ _ ---- •_ _ - - —-- ~~~~~~~~~~~~ -~~~~ - • •



Initial Minimum Init ial MinimumLevel L L d° dt

0 320 10 2.0 0.0078125
1 80 10 1.0 0.03125

2 40 10 0.25 0.03125

L is the number of iterations done with the current

value of the multiplier d
t.

Parameter Values for the Subgradient Optimization

Table 7.3

174 •

• -- _ -- • -- •



7.4 Computation Times for Pour Test Problems

Table 7.1 indicates run times for the four problems

un der the following conditions. No side constraints

were considered. !~o guess was admitted. No Optimun/

Relaxation ratio was given . In other words Table 7.1

gives the results for the HELSINKI algorithm when the

straight Helsinki problem was considered with no outside

information. Included in the table are the results for

the set partitioning a1~ orithm SETPAR under  the  same

conditions. CPU seconds are on a CYBER 175 compute:

using F O R T R A N  IV.

• Table 7.4 indicat~~ run  time fo r  both algori thms

incorporatin~ a Optimum/Relaxation ratio. It should be

noted that since the two algorithms use different

methods (suhgradient optimization and linear program-

• ming) to get relaxation value s at the top of the

• decision tree the same rati3 will 1Lid to different

upper bounds for the two, where uppe r hound equals ra tio

times relaxation value. (Recall that the subgradieat

procedure stops short of optimality.) Consequently, we

have chosen ratios for th~ HELSINKI algorithm to give

the same resulting uppe r bound tha t SETPAR calculated.

175



4) 0
B a,  0
4) -rI I-I ‘4‘-4 ,0 V~~O Cl) O~~fl 4) Ii
,~~~~~~~ ~~~~~~~~ ~.

$ 4 4 )  4)
p 4 4 )  ‘-4

~~~E ‘~~ 00 0.~~rI ‘~.O ’fl 0~~’4 %0 4) -~~ e
P4 E-4 0 0 0

~D 0 ‘0 cfl .~ 0 0 ~~ 41
0 — C’) ‘ 4 .~. 4 4 -u p4

V3~~~ —4 — 0 4) $4 0
~~~ ‘— 4) 4)

,0 i-I p. 1.)
e ‘u o p .

0r B
H .~~00 0 0  4 ) 0  4 ) 4 0
‘4 C’I’0 tfl C’~ —4 ‘44 v-4 0 5

H ~ 00 C’-I -4 .0 .0 ‘4 5
• .  0 0  •..4 U a)

0 00 C. 0 $4 0 0 ‘-400 —4 4) 0
41 4) u ai
~ 9.4 4) 0 ~

‘0 5 O w  • 4)
bO O 0 4) .0 5 04) 4) 41 ‘4 .0
‘4 0 t f l  r- -t — 0 41 0 41 4)

o w  ~ 0 ‘ 4 4 )
-t 0—4 C~)C’) 0 . 0  4) 4) 4)

• ‘
~~~$~ i 4 - ~~or- 0 .0 .0 145 4) r-. 0 r~ ir • ia ia iaw p .  4 U 0 S

~ 4) 41 s 0
8

5 -s ~~~~~~~~~ a)
4) 4)

-~~~0 O L f l O O % f l — 4 . 0 . ‘4
p4 •I_4 .-4 .- 4 I1~) — C’1 .0 tO C’~41 ‘4 4)

4) — 4 — ~~~ S H ‘-4 0
z

5 .0
o 4) 4)

0 1 4 4)
$4

Z P . ~
1-4 4) H S
.0 . 0 el ~~~ 4’) -~~ .t a, +. 4) 41
0 4) ‘-4 ‘4,0
04Z

p4

176

7.5 Results when Side Constraints are Included

The HELSINKI algorithm may be modified to handle

side constraints. A common side constraint in crew

scheduling problems is that the number of variables in

the solution be less than or equal to some number K.

N

j=1 ~

As mentioned in Chapter 5, the HELSINKI algorithm

can take advanta ge of this side constraint in its prime

number — shortest path relaxation. However , the

HELSINKI algorithm utilizes an additior.al technique to

include this side constraint. At each node of the

branch and bound search tree, there are now two phases.

• In ~hase one we consider a new problem formulated by

replacing the objective function of the original

Helsinki problem with our new constraint to form the new

objective funct ion

N
Nm

j=1 ~

We use the same techniques developed in Chapters 2

through 4 to solve this new prob lem . We form the

-

177

Lagrangean relaxation and use subgradient optimization

to tighten that relaxation. Using the backward—forward

Algorithm 3.3 to evaluate the relaxation, we are able to

eliminate many arcs which cannot participate in a

solution containing at most K variables. If we fail to

fathom the node using the side constraint as the

objective .~.unction , we then proceed to phase two. The

second phase entails solving the regular subproblcin

(wi th the original objective function). The elimination

of variables and their partners in phase one strengthens

our relaxation in phase two.

Both SETPAR and HELSINKI are capable of handling

the above restriction on the number of variables in the

optimal solution. Table 7.5 compares the two algorithms

for problems with this side constraint.

7.6 Decision Trees for the Four Test Problems

In order to give an impression of the actual

computation of the algorithm in solving the four test

problems, we include the decision trees generated in

problems 1 and 4. See Figures 7.1 and 7.2. Some

178

— —
.-~-—— —

-~ ~~~~~ ---~~ -
-
-*

~~

C..
UI
a)

‘-.4

0 1 4C.. ,4 tO 0
41 ;,

~ ‘4wr4 U‘-~~.0 0 0 00 0 ‘4 0

— ‘4
4) 0 •~~1 1 0 41 14 in

• ~~~~o r-~H a) 4~ 0 ‘i-i
M E o c i r -~~~ o-0 In 00 4) .0 Z i-I• .4 ~.4 .0 ‘.0 , 4 .-4 14 41U) . . . • ~ ~.4 • 41 4)
~~~O C’I C’1.-~~00 5 0 f-I—

• •~ 1.1C.. C.D 4.44) 5
—4 0 0

14 o’~ ’.o o ..i Z
.04) U 4)4) ~.4

‘4
H a U)
4 ) 1 4  4) 1.4 4.4‘4 4 )  ,-4 ,-l
.0 .0 .-4 C’1.0 .0 ,0 0 .00 0  o14 4)

p.

179

. • •



special notation has been employed. Nodes with an I

through the m, 0 , indicate nodes that were fathomed when

the logical reduction techniques demonstrated that the

problem was infeasible at that node.. Nodes where a

feasible solution was found are underlined and the value

of the feasible solution is entered. The node where the

optimal solution was found is underlined twice. All

other hanging nodes were fathomed by bounding . Those

nodes which were fathomed using the prime number —

shortest path algorithm are depicted by squares rather

than circles.

7 .7 Results of the Prime Number — Shortest Path

Algorithm

For the runs reported here the prime number —

shortest path subroutine was called whenever the number

of active variables became less than 60. We have also

made runs using a cut off of up to 125 variables. We

have found 75 to be most effective for easy problems

(numbers 1 and 4) and 60 to be most effective for the

two hard problems.

180

_____ - ______

_ _  ~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  — - -~- - - -~~~~~~

It was our exp erience with a cutoff of 60 that the

number of nodes ger.erated by the prime numbe r — shortest

path algorithm was very small (generally on the order of

100). Problems 2 and 3, however , generated an inordin-

ate number of Knifedge prollems requiring a thousand or

more nodes. See Figure 7.3.

In order to gain insigh t into the strength of using

the prime number algorith m we ran two of the test

problems without calling the prime number — shortest

path subroutine. The results are in Table 7.6. It has

been our experience that the prime numbe r subroutine

leads to time savings ranging from 5% to 30%, the

average being about 10 to 15%.

Finally,  we give results for a prime number —

shortest path algorithm developed for solving general

set partitioning problems. Problems were obtained by

eliminating rows from the four HelsiLki test problems.

See Table 7.7.

181 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~•


—_-~ •~~ •~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0
S
•~ 40~~~La

9

I
o

‘4

-g
1.4
4)

-~~

0
0 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 ~~~~0 0
— C’1 (‘) In ‘0 r’- 40 0~. 0 — ei m ‘0 in ‘0 1— 00 0~ 0 0
I I I I I I I I -~ — — — — — — — — — C’l el

— t’1 C’$.0 in ‘0 ~~ CD 0 0 0 0 0 0 0 0 0 0 0
o~. 0 — N m ..o i n ’ 0 r-. 00

-4 -4 -4 -4 -4 -4 -4 — — -4

Number of Nodes Generated

I
Number of Nodes Generated in Prime Number — Shortest Path

Subproblems

Figure 7.3

L

182

__________________________________ •

ThresholdProblem 60 0

1 26.336 30.231
4 15 .711 16 . 3 9 8

Threshold: When the number of variables in a subproblem
is less than or equal to the threshold, the
prime number — shortest path subroutine is
called .

Run times are CPU seconds on a CYBER 175 using FORTRAN IV.

Run Times for the HELSINKI Algorithm with Different Threshold
Values for Calling the Prime Number — Shortest Path Subroutine

Table 7.6

183

- - -~~~~~~“ ~~ .•~~~~~~~~~~~ -~-~~~-~~~~~~~~~-

Derivation Size Nodes Time

1 20 X 85 114 0.698

2 20 1 39 60 0.569

3 20 I 41 44 0.444
4 20 X 46 147 0.486
1 30 X 168 2314 1.651
2 30 x 79 767 0.901
3 30 1 89 1076 0.873
4 30 I 90 2096 1.256
1 40 I 271 >20,000 >7.056
2 40 1 147 10,745 6.551
3 40 I 139 15)100 9.699
4 40 I 169 >20,000 >7.562

Size: Rows X Columns
Derivation: Number of test problem which was truncated to

form this problem
Nodes : Number of nodes generated
Time: Solution time in CPU seconds on a CYBER 175

Results for the Prime Number — Shortest Path Set Partitioning
• Algorithm

Table 7.7

184

- I
_ _ _ _

~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.

~~
---

PART III Extensions and Discussion

CHAPTER 8

THE CIRCULAR ONES PR0~~ H

In this chapter we consider the circular ones or

cyclical staffing problem. This is the problem of

scheduling workers in a planning horizon that has a

cyclical nature. ~ze consider the circular ones set

partitioning problem. We show that it may be solved by

solving K shortest path problems where K is less than

the number of rows or columns in the original, problem.

We interpret the circular ones problem as one of t ry ing

to find the shortest path around a circle. In the final

section we consider networks on a circle.

185



8.1 The Circular Ones Problem

The circu lar ones problem is a special case of the

two duty period scheduling problem that has been studied

in some detail (Tucker (1971), Tibrewala, Philippe &

Browne (1972), Baker (1974) , Brownell & Lowerre (1976),

Bartholdi , Orlin & Ratliff (1977), Bar tholdi & Rat l i f f

(1977) ). The model represen ts con tinuous vork shi~ts in

cyclical time. That is, each person works a single duty

period with no break. By cyclical time we mean that the

planning horizon is of a definite duration having a

cyclical nature (a day, week , etc.); however, the time

chosen to demarcate the beginning and end of the

planning horizon is arbitrary. Take for example, the

problem of determining the daily work schedule for a

continuous opera tion , see Figure 8.1. The duration is

determined , twenty—four hours. However, saying that a

day begins and ends at midnig ht is arbitrary. Generally

a single duty period corresponds to a single segment in

the column. However, since we are now dealing with

cyclical time , a duty period may extend from the night

of one day to the morning of the next. See, for

exam ple, 13 in Figure 8.1.

186

~1



7
Mm

• il-i

st X1 X2 X3 X4 I5 X6 X7 RIIS

l2 p m — 2 a m  0 0 1  1 0 1 0  3
2 a m — 4 a m  0 1  1 1 0 0 0  2
4 a m — 6 a m  0 1  1 0 0 0 0  1
6 a m — 8 a m  0 1 1 0 0 0 0  1
8 a i n — l O am 0 1 0 0 1 0 0 2
lO a m — 1 2 m 0 1 0 0 1 0 0 1
1 2m  — 2pm 0 0 0 0 1 0 1 — 2
2 p m — 4 pm 0 0 0 0 1 0 1  1
4pm — 6pm 1 0 0 0 0 0 1 — 1

H 6 p m — 8 p m  1 0 0 0 0 0  1 1
H 8 p m — l O pm 1 0 1 0 0 0 0 — 1

lO p m — l 2 pm 1 0 1  1 0 0 0  2

An Example of the General Circular Ones — Cyclic Staffing Problem

Figure 8.1

187



Con sequently, the circular ones problem is a -
special case of the two duty period scheduling problem.

Indeed , one could expect most of the columns to have

• only one segment. In this case the network relaxation -

would be strong and the subgradient optimization could

be expected to converge rapidly. I
I ;

8.2 The Circular Ones Set Partitioning Problem

I
When the circula r one s prob le m is a set partit ion—

ing problem (P) -

(P) Mm CI

St A X 1  .

1 = 0 ,1

the HELSI NK I algorithm would be expected to f ind an

opt imal  solution quickly.  Howe ver , the circular ones

set partitioning problem can be solved more easily. It

requires solving only K shortest path problems where K

is the greatest number of nonzero entries in a column or

the smallest number of nonzero entries in a row, -

which ever is less. •

~188

I
ft



To show this, consider the solution to the circular

ones set partitioning problem. Recall that each column

of A represents a CONTINUOUS SHIFT in cyclical time,

corresponding to one or two segments of ones in the

column. Choose a variable, X~, in the solution. Let I

be the first row of the continuous duty period of

(i.e. choose I such that a1j = is a1,~~ = 0; or else

1 1). Then reorder the rot,s in the problem according

to the transformation

Q 1(i) i — I +  1 i~~~I

= M — I + i +  1 i < I

has the effect of rolling the constraint matrix

aroun d, in the sense that row I becomes row 1 and the

rows retain their same sequential ordering, where row 1

follows the last row, row N. This is equivalent to

starting 24 hour days at some arbitrary time, say 4 am ,

and finishing them at the same time the following day.

Under this transformation the columns will still have

the circu lar ones property. Conside r the problem

created by el iminating all columns having more than one

segment after  this transformation.  This new problem is

• simply a one duty period set partitioning problem which

• 189



_ _ _

we have shown in Chapter 2 to be equivalent to a

shortest path problem. Moreover, the optimal solution

to the original circular ones set partitioning problem

will be an optimal solution to this new problem.

Let K be the maximal number of nonzero entries in a

column of the original circular ones set partitioning

problem. Then, if we consider any K consecutive rows,

any feasible solution to the circular ones problem must

contain a continuous duty period which begins in one of

those K rows. To show this, consider the f i rst of the K

• rows, I. Row I is covered by some variable of the

feasible solution.. If the continuous duty period of

starts in row I, we are finished. If not, let k be the

last row of the continuous duty period of X~. Then

Q 1(k) < K. Otherwise, X~ contains more than K nonzero

entries. Then row k + 1 is covered by a continuous duty

period which begins in that row , where M + 1 1.

Consider now the following algorithm.

Algorithm 8.1

STEP O Let 1 = 0

190



AD AOSS 786 MASSACHUSETTS INST OF TECH CAMBRIDGE OPERATIONS RESE—ETC FIG 12/1
A LAGRANGEAN RELAXATION ALGORITHM FOR THE TWO DUTY PERIOD SCH€O—ETC(U)
JUN 78 W 8 SNEPARDSON DAAG2 —76—C—O Ofl

UNCLASS IFIED TR—1S2 ARO—114261.9—M NL
3~~3

A DA
Gb 5 786 ______________________ ______________________

END

8 78

I

- a ‘1



STEP 1 Let 1 = 1 + 1

Apply the transformation Q1to the circular

ones problem. Eliminate all columns now

having more than one segment, since none

of these columns can participate in a

solution having a continuous duty period

starting in row I. Solve the transformed

problem as a shortest path problem . The

solution will be an optimal solution under

the restriction that the solution contain

a continuous duty period starting in row

I.

If I < K go to STEP 1.

STEP 2 Of the ~ solutions generated , choose the best.

STOP

Algorithm 8.1 will solve the original circular ones

problem. We have shown this since the solution will.

have a continuous duty period starting in one of the

first K rows, say row I. Then the Ith iteration of

Algorithm 8.1 will find that solution. Of course the

solutions found at each iteration of the algorithm will

be feasible solutions to the original circular ones

191



problem, since the shortest path problem generated is a

restriction of the original problem.

Likewise we can show that (1’) (for an example see

Figure 8.2) can be solved by solving K shortest path

problems, where K is the smallest number of nonzero

entries in a row. Repeat the first constraint as an N +

1st constraint to give an enlarged con straint matrix A’.

See Figure 8.3. Apply transformation T of Chapter 2 to

the constraint matrix A s .. Then TA’ can be partitioned

into La 1 J ( T A ’) * )  where a1 is the first row of A (recall

that T leaves the first row of A unchanged), and (TA’)*

is a matrix representing a shortest path problem

(Bartholdi , Orlin & Batliff (1977) 3. See Figure 8.4.

In other words, (P) may be rewritten as a shortest path

problem with one complicating constraint of the form

N

~ a~~X = 1  a1 = 0 ,1
j=1 j

This complicating constraint simply requires that

only one oL the variables for which a1j = 1 can be

nonzero. The following algorithm wilY solve (P).

1 192

_ _  ~~



-

7
Mm ~~~C~Xii.’ 

i

at X1 X2 X3 X4 X5 X6 X7 RIIS

l2 p m — 2 a m  0 0 1  1 0 1 0  1
2 a m — 4 a m  0 1  1 1 0 0 0  = 1
4 ain— 6am 0 1  1 0 0 0 0  1
6 a m — S a m  0 1  1 0 0 0 0  = 1
8 a m — l O am 0 1 0 0 1 0 0 1
lO ain— 12 m 0 1 0 0 1 0 0 1
1 2 m — Z pm 0 0 0 0 1 0 1  1

2 p m — 4 p m  0 0 0 0 1 0 1  1
4 p m — 6 p n i  1 0 0 0 0 0 1  1
6 p m — 8 p m  1 0 0 0 0 0 1 1
8 p m — l O pm 1 0 1 0 0 0 0 1

lO pm - l2 pm 1 0 1 1 0 0 0 — 1

An Example of the Circular Ones Set Partitioning Problem

Figure 8.2

193



-~~

N
Mm C XI I

St X1 X2 X3 X4 X5 X6 5 RRS

12 pm - 2 a m  0 0 1 1 0 1 0 — 1
2am — 4 a m  0 1 1 1 0 0 0 — 1
4 a m — 6 a m  0 1  1 0 0 0 0 — 1
6 a m — 8 a m  0 1  1 0 0 0 0 — 1
8 a m — l O am 0 1 0 0 1 0 0 1

lO a m — 1 2 m 0 1 0 0 1 0 0 —

12 m  — 2 pm 0 0 0 0 1 0 1 1
2 p m — 4 p m  0 0 0 0 1 0 1 1
4pm — 6pm 1 0 0 0 0 0 1 1
6 p m — 8 p m  1 0 0 0 0 0 1 — 1
8 p m — l O pm 1 0 1 0 0 0 0 1

~~~ lO p m - l 2 pin 1 0 1 1 0 0 0 1
~~~~12 p m - 2 a m  0 0  1 1 0 1 0 — 1

The Circular Ones Example of Figure 8.2 with the First Constraint
Repeated as a Thirteenth Constraint

Figure 8.3

194

L _ .  - -~-



—- - - . .

~~~~ ~~~~—

N
Mm ~~~C Xi—i ll

St X~ X2 X3 X4 X5 X6 X7 RHS

l 2 p m — 2 a m 0 0 1 1 0 1 0 — 1
2 a m — 4 a m 0 1 0 0 0 — 1 0 — 0
4 a m — 6 a m 0 0 0 —1 0 0 0 — 0
6 a m — 8 a m 0 0 0 0 0 0 0 — 0
8 a m - l O am 0 0 — 1 0 1 0 0 — 0
lO am — 1 2 m 0 0 0 0 0 0 0 = 0
1 2 m — 2 p m 0 — 1 0 0 0 0 1 — 0
2 p m - 4 p m 0 0 0 0 0 0 0 = 0
4 p m — 6 pm 1 0 0 0 — 1 0 0 — 0
6 p m — 8 p i n 0 0 0 0 0 0 0 = 0
8p m - l O p m 0 0 1 0 0 0 — 1 0

IO p m — I Z pm 0 0 0 1 0 0 0 0
i2 p m — 2 a m —1 0 0 0 0 1 0 — — i

The Circular Ones Example of Figure 8.3 Transformed by T13

Figure 8.4

195

---- — ——--.——-~
----.

~ ~~
-—

~~~~~~
-

~
--- - - - -------- --

~
—-

~~



~~~~

—

~~~~~~~~~~~~~~~~~~

- 
—-

~~~~~~~~~~~~~~

- - -----:
~

- —— i . ~Ji~
-
~

-—- -

~~~~

Algorithm 8.2

S

STEP 0 Find the row I with the least number of

nonzero entries.

Apply transformation to (P).

Let j = 0.

STEP 1  L e t j = j + 1

If a1) = 0 GO TO STEP 1

Solve the shortest path problem defined

by (TA’)* with 13 
= 1,

if a ]JC = l , k � j

I f j < N  GO TO STEP 1

STEP 2 Of the solutions generated , choose the best.

STOP

It is an interesting feature of Algorithm 8.2 that

the shortest path problems solved will, all be acyclic.

This is because, in the transformed constraint matrix,

precisely those columns representing arcs going backward

are the columns which are set equal to zero or one

before the shortest path problem is solved.

196



_ _ _ _ _ _ _ _ _

8.3 Shortest Path on a Circle

There is an interesting interpretation to Algorithm

8.1. Suppose the original circular ones set

partitioning problem has N rows. Consider a network

with N nodes. Think of the N nodes as being arranged in

a circle (see Figure 8.5 corresponding to Figure 8.2).

Interpret each variable of the problem as an arc

beginning at the node corresponding to the row in which

the continuous duty period of the variable begins, and

ending at the node after the one corresponding to the

row in which the continuous duty period of the variable

ends. See Figure 8.5. Enter the arcs on the network

diagram by always directing them clockwise around the

circle of nodes. The circular ones set partitioning

problem corresponds to finding the shortest path on a

circle. One need only consider any node, say I, and

solve the shortest path problem where node I is both the

origin and the destination for the problem. Then

resolve the problem using node I + 1 as the origin!

destination. Continue in this manner until the shortest

path problem has been solved for K consecutive origin/

destinations where K is the greatest number of nonzero

entries in a column. This guarantees finding the

197



I

12

~~ 10pm
/ 2am

1 3

8pm 4am

H

4pm 8am

17

• 1
1 2m

x5

The Graph of the Circular Ones Problem of Figure 8.2

Pigure 8.5

198



~ _~
___

~ __  — 
-_ ---— ——- --_

~~
. :  

~~
--

shortest path around the circle. This is because the

solution must contain an arc which begins at one of the

K nodes considered , since no arc is longer than K + 1

nodes.

Algori thm 8.2 may be interpreted in a similar

manner .  If (P) is considered as a shortest path problem

on a circle, find the node I with the least number of

arcs, say K, starting at that node or passing over that

node. Then solve the shortest path problem starting and

ending at node I, K times. Each time set one (a di f-

ferent one) of the K arcs passing over or starting at

node I equal to one, and the other K — 1 equal to zero.

8.4 Networks on a Circle

These intepretations extend to thc general circular

ones problem (P)

(P) Nm CX

St AX = b

X Integer, Nonnegative

199



— -_ - _ - — -
~~~~

.. - ------ ——,,-‘--
~~

-- - - - .,-
~~~~~~~~~~~~~~~~~~

--—-
~~- — ~

----_ .--_---- -.-- --_ -- - --------_ - 

~
--_

~

Nov the proble m is one of a network on a circle.

Consider the example in Figure 8.1. Let I be the row of

the A matrix with minimum bj~. Then apply transformation

to A. See the example in Figure 8.6. Now repeat the

first constraint as an N + 1st constraint to the problem

and apply transformation T of Chapter 2 to the problem

(see Figures 8...7 and 8.8).. The problem has been

transformed to a network flow problem with one side

constraint a I = b , where a is the Itb row of A.
I I I

(P’) Mm CX

St a1 X = b 1

A*1 b*

I Integers Nonnegative

Interpreting (P’) in our circular network model, we

see we have a normal network pr otlem wi th the additional

constraint tha t  the amount  of f low passing through OR

PAST node 1 must equal b1..

Formulation (P’) suggests how easy it might  be to

solve the circular ones problem using Algorithm 3..1..

There is only one complicating constraint in (P’).

Therefore , we form the Langrangean relaxation

200

i i .  

_
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

_ _ _ ~~~~~ -~~~~~~~~~ - - — _ -
~~~~~~~.-~~~~~~~ -~~~~

-_ - —-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~-—-—-—~~~~~~--- - - - -

7

Mm
j=1

st X1 X2 X3 X4 X5 X6 X7 RHS

4 a m — 6 a m 0 1 1 0 0 0 0 — 1
6 a m — 8 a m 0 1 1 0 0 0 0 = 1
8 a m — l O am 0 1 0 0 1 0 0 — 2

lO a m — 1 2 m 0 1 0 0 1 0 0 = 1
i 2 m — 2 p m 0 0 0 0 1 0 1 = 2

2 pm — 4 pm 0 0 0 0 1 0 1 1
4 p m — 6 p m 1 0 0 0 0 0 1 1
6 p m — 8 p m 1 0 0 0 0 0 1 1
8 p m — l O pin 1 0 1 0 0 0 0 = 1

lO p m — l 2 pm 1 0 1 1 0 0 0 — 2
l2 p m — 2 a m 0 0 1 1 0 1 0 — 3

2 a m — 4 a m 0 1 1 1 0 0 0 — 2

X
1 ~~, 0, Integer j 1,2,...,7

The Circular Ones Example of Figure 8.1 Transformed by Q
3

Figure 8.6

201

7
Mm E c1x3i—i

St X1 X2 X3 X4 X5 X6 5 BBS

4 a m — 6 a m 0 1 1 0 0 0 0 = 1
6 a m — 8 a m 0 1 1 0 0 0 0 = 1
8 am — l O am 0 1 0 0 1 0 0 — 2
lO am — 12 m 0 1 0 0 1 0 0 1
1 2 m — 2 pm 0 0 0 0 1 0 1 2
2 p m — 4 pm 0 0 0 0 1 0 1 = 1
4p m — 6 pm 1 0 0 0 0 0 1 = 1
6 p m — 8 p t n 1 0 0 0 0 0 1 = 1 H

• 8 p m — l O pm 1 0 1 0 0 0 0 = 1
lO p m — l 2 pm 1 0 1 1 0 0 0 2
l2 p m — 2 a n i 0 0 1 1 0 1 0 — 3
2 a m — 4 a m 0 1 1 1 0 0 0 — 2

~~~~ 4 a m — 6 a m  0 1  1 0 0 0 0 — 1

X
1 

> 0, Integer j 1,2,...,7

The Circular Ones Example of Figure 8.6 with the First Constraint

• Repeated as a Thirteenth Constraint

Figure 8.7

202

3



___________ 
-— 

~~~~~~~~~~~~~~~~ .—---

7
Miii ~~ C1

X
1i—i

st X1 X2 X3 X4 X5 X6 X7 BBS

4 am — 6am 0 1 1 0 0 0 0 — 1
6 a m — 8 a m 0 0 0 0 0 0 0 = 0

• 8 a m — i O am 0 0 — 1 0 1 0 0 — 1
lO am=1 2 m 0 0 0 0 0 0 0 — — i
12m — 2pm 0 —i 0 0 0 0 1 — 1
2 pm - 4 pm 0 0 0 0 0 0 0 —1
4 p m — 6pm 1 0 0 0 —1 0 0 — 0
6 pm — 8pm 0 0 0 0 0 0 0 = 0
8 pm — l O pm 0 0 1 0 0 0 —1 0
lO p m — l 2 pm 0 0 0 1 0 0 0 = 1
l2 p m — 2 a m —1 0 0 0 0 1 0 — 1
2am — 4 a m 0 1 0 0 0 —1 0 — —1
4 a m— 6am 0 0 0 — 1 0 0 0 — — i

X~ > 0, Integer j —

The Circular Ones Example of Figure 8.7 Transformed by T13

Figure 8.8

203

_ _ _ _ _ _ _ - ~- - --------- - - - • -- -~~
-__•- - - - ------ —

I
11(0) = —U b + fin (C + Ua)X

St h i S

where S is the set of solutions to the network flow
-

problem defined by A*X = b*. 11(0) is a concave

piecewise linear function and U is a scalar. Con—

seguently, the subgradient optimization reduces to a

simple line search for a concave functioi~.

I

201$

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • ___ _ _1_
--

- . -

CHAPTER 9

THE K DUTY PERIOD SCHEDULING PROBLEM

In this chapter we consider the K duty period

scheduling problem. After describing the problem in

Section 9.1, we show in the next section that the

Lagrangean relaxation is once again a network flow

problem. In Section 9.3 we demonstrate that subgradient

optimization can be used to tighten the relaxation.

Finally, we interpret the iterative process of the

subgradient optimization.

9.1 The K Duty Period Scheduling Problem

Although thus far we have dealt exclusively with

the two duty period scheduling problem, it is quite

possible to extend our development to the more general K

• duty period scheduling problem where K = 1,2,3,.... The

formula tion would be

205

_ . l

T
O

(P) fin CX

St A X b

I Integer, Nonnegative

where each column of A contains at most K segments of

ones, as defined in Chapte r 2, the rest of the entries

being zero.

The first consjderat~on is whether or not this is a

realistic problem. There are a number of possible

applications. The first is simply the two duty period

• scheduling problem on a continuous twenty—four hour

operation. This is analogous to the circular ones

problem discussed in the previous chapter. For

example, consider the problem of assigning drivers to

buses which run 24 hours a day. It is not possible to

formulate this problem as a two duty period scheduling

‘ problem so long as , for each row of the constraint

matrix, there exists at least one duty period covering

that row but not starting in it.

Suppose we are concerned with Bus A. Any 24 hour

(or other) period need not have exactly two segments in

each column in the constraint ma trix. See Figure 9.1.

206

•

_ _ _ _
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1iii_~~~



Miii

i—i

at X1 X2 X3 X4 X5 X6 BBS

l 2 p m — 2 a m  0 1 1  0 1  1 — 2
2am — 4 a m  0 1 0 1 0 0 — 2
4 a m — 6 a m  0 0 1  1 0 0 — 1
6 a m — 8 a m  1 1 1 0 0 0 — 3
8 a m — l O am 1 1 0 1 0 0 — 2
lO arn— 1 2 m 1 0 0 1 0 0 — 1
1 2 m — 2 pm 0 0 0  1 1 0 — 2
2 p m — 4 pm 0 0 0 0 1 0 — 1
4pm — 6 pm 0 0 0 0 1  1 2
6 p m — 8 p m  0 0 0 0 0 1 — 1
8 p m — l O pm 0 0 0 0 0 1 — 1
lO p m — l 2 pm 0 0 1 0 1 1 — 3

X~ > 0, Integer j — 1,2,...,6

An Example of the Circular Ones Problem with Two Continuous
• Duty Periods for Each Worker

Figure 9.1

207

-~~~~ 
S-- - -” ~~~~~~~~~~~~~~~~~~ , , ~~~~~~~~~~ - 

-
~~~~


—

Whereas possible driver schedules correspond to one

or two segments (e.g. X 1,X2) others might inevitably

lead to three sejaents (e.g. 13). Due to the wrap

around nature of the continuous schedule a duty period

might begin near the end of the column (e.g. 10 pm) and

terminate near the beginning of the co’umn (e.g. 2 am).

This situation leads to three segments in the column.

• Consequently, the three duty period scheduling problem

corresponds to scheduling personnel, each having at most

two duty periods in a given time period (a day), where

the job must be performed continuously from day to day.

It is not difficult to consider examples of the K

duty period scheduling problem where K is greater than

3. Such a proble m correspond s to scheduling personnel

to serve at most K duty periods in a given planning
0

horizon, for example five duty periods in seven days.

Such a problem would be a K duty period scheduling

problem in the case of linear time or a K + 1 duty

period scheduling problem in the case of cyclic tine.

An interesting extension of this idea is that the

general N I N set partitioning problem can be viewed as

an ((N+1)/2] duty period scheduling problem, where

208

_ _

_ _
0

_______ O 0 O —~~~~~~ ~~~~~~

0 0~~~~~ O~

• ((f+1)/2) is the largest integer less than or equal to

(N+1)/2. This is simply because ((N+1)/2] is the

greatest number of segments possible in a column with N

rows.

9.2 The Relaxation

Consider the K duty period scheduling problem (P)

(P) fin CX

st A X = b

I Integer, Nonnegative

* where each column contains at most K segments. Our

relaxation will be to decouple the K segments in each

column to give K new columns each with one segment. The

relaxation is then a network f low problem. To create a

problem equivalent to (P) one must add side constraints

forcing the K variables replacing each original variable

to be equal. We have already proved in Proposition 2.1

that (P’) is equivalent to (P).

209

~~~~~~~~~~~~ 0~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - - — - -----—--- - - •_ •__ ---



0 N

(P’) fin ~~ c1
~~j— 1 k—i ~

N k

st ~~~~~~ Ak4 = b
j —i k=1

X~~— I~~
1 = 0 j = 1,...,N; k = 1,....,k

1—1

~~~~~ Integer j = 1,....,N; k =

where E Ck = C , j = 1,...,N; k < K
k—i 3

A column containing K segments in th~ original

problem (P) will correspond to K arcs in the relaxation.

If all of these partner arcs (corresponding to the same

original column) have the same value in the relaxation,

then there is, in essence, no relaxation. The more the

partner arcs’ values d i f f e r, the lccser the relaxation

will be. In tZiis sense, we can say that the larger K

is, the weaker the network flow relaxation will. be..

This is simply because the number of arcs has been

increased.

I

9.3 Tightening the Relaxation

Once again it would be possible to use subgradient

optimization to tighten the relaxation. Consider the K

duty period scheduling problem (P’) which may be

rewritten as (P”)

N
(P9 fin ~~ ~~~~x in S ~~ k 1

st X~ — X~~~ = 0 j =

k = l ,..... ,k1—l

where S is the set of solutions to the network flow

problem given by the constraints

N k

~~~~~ A~ 1k = b
j—i k—i

Then the Langrangean relaxation of (P”) is

N k
1 N k~

_l

11(0) = fin ~~~~ C~ X~ + > U~~(X k 
— X~~’)

O X in S j=1 k—i j—1 k—i

X tn S  
(C~ + U~ U

J
)X~

where 0 E 0 , ~~~ 0

211

O OO ~~~~~~~~~~~ 0~~~~ 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----- ••—- -- —-- -~~-- ---



00 -

and U = ~~~~~~~~~~~~~~~~~~~~~

I = ~~~~~~~~~~~~~~~~~~~~~~

Since 11(U) has the integrality property, fax 11 (U) viii.

be equal to the linear programming relaxation of (P).

Consider the function 11(U). This is a piecewise

linear concave function, since it is the pointwise

minimum of a family of linear functions of U. Suppose X

~~~~~~~~~~~~~~~~~~~~~ is optimal. for 11 (U). Then as

we have shown in Chapter 4 , Section 4.1 , ~X — I) is

a subgradient of W at ii, where

Ak ‘ic+l
—

A l ‘~2 Ak1~1 ~k1
AkN_i

—
“kMI — I —

~
1
~

11,...,X1 i ,.....,Xt~ 1N)

Consequently, we may again use subgradient

optimization to tighten our relaxation.. Let V be the

target value. Then at iteration t + 1, we define

= U~ + d~[W — W (U t)Js~ / 1s~~1
2

I

t A~~~~ A k4.1 t
where a (I — x)

“k ~k+1
(I — I) at iteration t

_ _ _ _ _ _ _ _ _

-~~~

—

~~~



•0 0~~~
_

~~~~~~~~~~~ ‘~~~~~~~~~~O~~~~~~~~~~~~~~~~~~O~~~~~~~~~

w here dt satisfies 0 < d
t

< 2, d
t

—> 0,

and ~~~d
t

t—1

9.14 Interpreting the Subgradient Optimization Iteration

To interpret the iterative step defining the

multipliers at iteration t + 1, let us develop a little

terminology. Eai.h variable 1
1

in our original problem

was decoupled into k variables (X
1
,X2,X

3 ,.._,X~i). For

each variable X~, define its PARTNERS to be its

PREDECESSOR X~~’, and its SUCCESSOR X 1(I
~~, where they

exist (i.e. k ~ l~ k~). Define the ASSOCIATES of X~ to

be , for all i # k, 1 ~~ i ~ k
J
. Now, at iteration

t + 1:

(C ~)
t+1

= C + (U~)
t+i

— (U
k_i

)
t+1

213

_ _ _ _ _ _ _ _ _ _ ~~~~~~~~~~ O---~~~~~~~~~ O __ _ _

• 0 0 0 — - O -~~ - - - 0 0 • • -• 0- O - -~~~~~~~~—- - •- - _ _-~~~~-—~~~~~~~~~~~~--—

-

~~~~

Case l: 1 < k < k

(C~)
t+1 

= C~ + (U~)
t 

+ dt [W  — W (Ut))(s~)t / 15 t
1
2 . 

0

k t  
(U~~~)

t 
— d t ( W  — w ( u

t) ] ( s~~~~~~
I

)
t
/ Js tl

2 

2= (C1) + d (V — W ( U  ) X ( S
1

) — (S
i 

) t ] f Is t
I

= (C~)
t 

+ d
t

( 0 W  — V ( U t
))[(?)t — (1k+1)t —

(1 k—1
)
t 

+ (~~~) t]/ 5t1 2

= (C~)
t 

+ dt ( W  — N (Ut) ][_(1k_1)t + 2( 1k) t 
—

(X~~~1)t)/ 15
t

1
2

Case 2: k = 1

• 

(C~) ~~ = C~ + (LJ~) 
t+1

= C~ + (U~)~ + d t(W — W (U t)](s~5t, ,5
t
,
2

= (C~)
t 

+ dt[V — W(U t) ][ (X~ )~ — (12)
t

03/ 15
t

,
2

Case 3: k =

k t+1 k k-I t-i- i(C
1
) C

1
—(U

1 
)

C~ 
— (U~~~~~~~~~)

t 
— d

t
( V  — V (Ut)](s~

_1
)t/ 15t ,

2

(C~)
t 

— d
t (N — 11(0t

) ]((xkj_ 1)t — (x kl ) t ]/ 5t 1 2

214 

•
~~~~~~~~~~~~~~~~~~ • _ 0~ ~asr~~~—’


Note for the case = 2, Case 3 above becomes

Case 3*: k = k = 2

(C~)
t+1

= (C~)
t

- d t(U - W (U
t)][(X ~~)

t
- (12)t)/ 15

t
1
2

and Cases 2 and 3* define the iterative formula

developed in Chapter 4 for ~~~~ for the two duty period

scheduling problem , where X~ = and X~ = Z~.

Let us exam.~ne the general fornula given in Case 1

above. Recall.

5
t

= (s~)~ j = 1,....~ ,N; k = 1,..., k
1

Then

Js t I 2
=

~~~~~~ 

(s~)
2

= 

~~~~~~ 
(X ~ — X

f 1
)

2

So 15
t

1
2 is equal to the number of times a decoupled

arc is different than its successor. Note that in Case

1 above

215

- — 0

—2 ~~, -(X~~ ’f + 2 (X ~ j — (X
1
~~~~~~j ~~~ 2 

- 

0

Let p t be the penalty at iteration t + 1

0

0 

pt — 

(V — U ( O
t

) 3,

Then

(C~ )
t4~~ = (C~ )

t 
+ 2P~ if is in the current

solution but neitmer its suc-

cessor nor its predecessor is

k t+1 k t t - k -(C1 ) (C1 ) + P if X
1 is in the current solu— 0

tion and either its successor

or predecessor (but not both) 
0

is also in

k t+1 k t . k

• (C1 ) (C
1 ) if I~ and its successor and

predecessor are either all in

O or all not in the current

solution

216 
-

_  
a

0 0  _



_____ — O- O- -- ---- -- 0~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ -___

(C~ ) ~~~
j
= (C~ ) — pt j j  is not in the current

0 
solution but either its suc—

- cessor or predecessor (but not

both) is in

(C~ )
t~~~~= (C~ )

t — 2P~ if is not in the current

solution but both its successor

and predecessor are in.

• 9.5 Summary

The K duty period scheduling problem may be handled

in a way analogous to the two duty period scheduling

problem. By decoupling the segments in each column the

probl em can be reformulated as a network flow problem

with side constraints. In the case of a set parti—

tioning problem the relaxation becomes an acyclic

shortest path problem. When an arc is chosen to be in

the solution to the shortest path relaxation, all of its

associates are also chosen.. It is then possible to

eliminate all arcs (and their associates) which conflict

with these chosen arcs. Similarly , using the

backward—forward iterative solution procedure for the

0 217



shortest path problem , it is possible to eliminate arcs

which cannot partici pate in a solution better than the

best known solution. Of course , when an arc is

eliminated , its associates are also eliminated.

~~~0 

~

218

- —
~~~ -O~~~~~~~ -- - ---- —-~~~~~~~~~---- -- -- - -~~~-—--~~~~~--O— ~~~~ 0~ - ~~ 0~~ ~~~~~~~~~~~~~ -



_ -- --- .-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~- - -0-0

CHAPTER 10

GENERAL METHODOLOGY

In this chapter we consider the general procedure

of decoupling columns to form problems a~iienab1e to

Lagrangean relaxation techniques. It is shown that  the

methodology is applicable to near block diagonal

matrices.

10.1 Solution Procedure for the Two r~uty Period

Scheduling Problem

O The previous chapters have been devoted to

developing a solution procedure for the two duty period
• 0 -O  scheduling problem. In this chapter we t ry  to examine

the methodology that has been developed and see to what

extent  it ma y be general ized.

We began with the two du ty period scheduling

problem (P):

219 
• 

0



(P) fi n CI

St A X b

I Inte .~er, Nonnegative

where each column of A contained exactly two segments of

ones. As such , the problem could be handled only by

general inte;er programming tecnniques. However, it was

recognized that by decoupling the columns, the problem

could be transformed into a network flow problem with

side constraints. These side constraints were very

• simple, of the form Y - Z = 0.

It was shown that by putting these side constraints

into the objective function, a very easily evaluated - 0

Lagrangean could be formed. Moreover , due to the simple

nature of the side constraints, the dual problem could

be solved very efficiently by subgradient optimization

techniques. The computation involved at each iteration

.10 was very slight compared to solving the linear pro-

gramming relaxation of the orig inal two duty period

scheduling problem. 0

220

0 0 0 
— - - __________0

~~~

_ ~ 0~~~~_

10.2 broader Applications of the Methodology

Developed to Solve the Two Duty Period

Scheduling Problem

- The technique used in solving the two duty period

scheduling problem was simply to decouple the columns to

achieve an easily solved problem with side constraints.

Are there other si tuations when the same thing might be

done profitably?

There is the immedia te extension to ~il problems

having at most two plus ones and two negative ones in

0
each column , the other entrie s being zero. Each column

could then be decoupled into two columns each containing

one plus one and one negative one. The problem could

then be solved as a network flow problem with coupled

arcs. Similarly , any 0—1 matrix having at most four

nonzero entries in a column could be trai~sformed to a

matching problem with coupled arcs (Nemhauser (1978)].

We look now to othe r applications of the decoupling

0
technique. Consider a block diagonal coefficient matrix

with K blocks and with complica ting variables (see

Figure 10.1). Benders Decoipositiot is a well known

221

— •- ~~~ O~~~~

I

• ‘1

1

I
I •0

-J
$1

I

00
~ 0~‘ . 4 W 1.4
1.4 ,-I

U

0 —

0

222

~~~~~~-

. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0~~~~ ~~~~ O~~±:. •~t~~ 


-~~~~ . - - - O - - ~~~~ O S --- -_ ~
-
~~-—

technique for handling this particular problem. An

alternative method would be to decouple the complicating

variables. Replace each complicating variable I with K

variables ~~~ k = 1,...,K, where contains the entries

of the rows in the kth block in the block diagonal

structure of the easy variables. Add the complicating

constraints = 1k+~ , k = 1,...,K— 1. Then rather than

use Benders on the proble m it may be advantageous to

dualize with respect to the new complicating constraints

and solve the Lagrangean relaxation with subgradient

optimization.

A special case of the near block diagonal problem

is the mathematical programming problem with staircase

structure, see Figure 10.2. In this problem we again

have K blocks. However , now each complicating variable
0

has entries in only two (adjacent) blocks. Consequently,

replace each complicating variable I with I and Z where

I contains the entries of the rows in the first block

covered by I, and Z contains the entries of the rows in

the second block. Add the complicating constraints I =

Z. The problem now can be solved using Lagrangean

relaxation and subgradient optimization.

223

I

I .0

0

~~~~~~~~~~ ~~~~~~~~~~~~~

H 
I

tj 

-

~ .__ __f 0

- 224 •

- .~~~~~~~~~~ -. .. .O- --- ~~---~~ .- - --— . -~~~~~~~~~~~~~~~~~~~~~~~ —
.
~~~-_ -~~~~--— O.


_ _ _ _ _ _ _ _ _ _ _ _ - —- .- ~~~~~ --—- --— ----- -—--~.--—----

• A similar situation.arises for near block diagonal

problems with complicating constraints, see Figure 10.3.

Here we consider the simplest case of only two blocks.

Consider a complicating constraint

k N

a 1 1 + ! a~4 X 4 b~j~1 j=k+1

This constraint may be rep laced by the two constraints

k

i— i
• N

O

1 a~~X +!1 = b ~j—k+1

• to form an equivalent problem. If each of tne coapli—

cating constraints is replaced by two constraints in

this way, the problem has been transformed to a near

block diagonal problem with complica ting variables (the

Y~
). Then, as we have shown, the complicating variables

lay be decoupled to solve the problem via Lagrangean

0 , relaxation and subgradient optimization. This technique

may be easily extended to a near block diagonal problem

with K blocks and complicating constraints.

225

~~~~~~~~~~~~~~~~~~~~~~~~ ._ _ _ _  ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~



4

I

1.4

1.4

• 0 1.4

‘.4
i-I

a o
3 —

V

_ _ _ _ _ _ _ _ _ _ _ _  ____________ -

i-I
• .0

O 2
1.4

a1.4
V

• 1_I
00 e 5

O 0
U

00 0

p4 00
I V I..
I U V
I ‘.4 V

O ~..4 Z

~1 _ _ _  _ _ _  
0

O

s

.

~~~~~~~~~~~~ 

_

_ _ _ _ _ __ _ _ _ _

226

_ - - ~~~~~0

0 0 ~~~ 0 _~~~

BIBLIOGRAPH Y

1. Agmon, S., “The Relaxation flethod for Linear

Inequalities,” Canadian journal of Mathematics,

Vol. 6, No. 3, (195L~) , pp. 382—392.

2. Assad , A . A . , “Mu lt icommodi ty Network Flows —

Compu tational Experience ,” Working Paper OR 058—76,

Operations Research Center , Massachu se tts Institute

of Technology, (October 1976)~.

3. Baker , K . R . , “ Scheduling a Full—Time Uorkforce to

Meet Cyclic Staff ing Requirements,” Management

Science, Vol. 20, No. 12, (August 1974), Pp.

1561— 1568.

4. Baker, K.R., “Jorkforce Allocation in Cyclical

Scheduling Problems : Models and Applications,”

G.S.B.A. Paper No. 122, Graduate School of

Business Administration, Duke University, (June

1975).

227
•

.

~~0~~~~~ 0

0O . _~~~ — -, -— -O--~~~---— — _ _ _ _ _ _ __
~

__
~~~~~~~~~ _~~~ 0 - O 0 .

~~~~~~~~~~~~ -- _~~~O O~~~0~~~~


-~~~~~~ 0~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ —OO,-- - -. - O -~~~~---- —

5. Barthold i, J.J., and R a t l if f , H.D., “Unnetworks,

With Applications to Idle Time Scheduling,” 0

Research Report No. 77—4, Industrial and Systems

Engineering Department, University of Florida, 0

Gainesville, (Ap ril 1977).

6. Bartholdi, J.J., Orlin, J.B., and Ra tliff , H.D.,

“Circular l’ s and Cyclic Staffing ,” Research Report

77—11, Industrial and Systems Engineering

Depar tmen t, University of Florida, (1977).

7. Brownell, U.S., and Lowerre , J.M., “Scheduling of

Work Forces Required in Continuous Operations Under

Alternative Labor Policies,” Management Science,

Vol. 22, No. 5, (January 1976) , pp. 597—605.

8. Cornuejols , G., Fisher , M . L . , a nd N embauser , G. L. ,

“Location of Bank Accounts to Opt ii~ize Float: An

Analytic Study of Exact and Appro ximate

Algorithms,” Management Science, Vol. 23, No. 8,

(April 1977), pp. 789—810.

228

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~O 0 0 ~~~~ _ _ _ _



_ _ _ _ _  ~~~~ 0_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ O- 
_ _O~~~~~~-~~

9. Denardo , E.V. , and Fox , B.L., “Sho rtest Route

Methods: 1. Reaching, Prun ing ,  and ~uckets,”

Publication No. 263, Departement d’Informatique et

de Recherche Operationelle, Universite de Montreal,

Canada , (September 1977) .

0 
10. Etcheberry,  J., “The Set Representation Problem: A

New Implicit Enume ration Algorith m,” Pub. No.

76/18/C, Centro de Planeamiento — Departamento de
0 

Industrias, Universidad de Chile — Sede Occidente,

(September 1976).

11. Everett, H., “Generalized Lagrange Multiplier Method
- for Solving Problems of Optimum Allocation of

Resources,” Operations Research, Vol. 11, No. 3,

0 (May—June 1963), pp. 399—417.

12. Fisher, M.L., “Optimal Solution of Scheduling

O Problems Using Lagrange Mul t ip l ie rs, Pa r t I,”
0 Operations Research, Vol. 21 , No. 5,

- (September—October 1973), pp. 1114—1127 .

229 
• 

-



0~~~ 0 0 0 0 0 • 0 0 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— - 0 - — -O ~~~—- ____ 
_ _ _ _ _ _

13. Fisher, M.L., “Optimal Solution of Scheduling

Problems Using Lagrange Mult ipl iers , Part II ,”

Symposium on Theory of Scheduling and its

Applications, North Carolina State University, 0

Raleigh, (1972)

14. Fisher, M.L., Nor thup ,  W.D., and Shapiro, J.P.,

“Using Duality to Solve Discrete Optimization

Problems: Theory and Computational Experience,”

Mathematical Programming Study 3, (1975), pp.

56—94.

15. Garfinkel, R.S., and Neahauser, G.L., In teger

Programming,  Wiley & Sons, New York, (1972) .

16. Geoffrion , A.M ., “Duality in Nonlinear Programming:

A Simplified Applications—Oriented Development,”

Society for Industrial and Applied Mathematics

Review , Vol. 13, No. 1, (January 1971),

pp. 1—37. 0 0

17. Geoffrion , A., “Lagrangean Relaxation for Integer

Programming,” Mathematical Programming Study 2,

(1974), pp. 82—114.

0 230

p

-O  ~~~00 O 0- ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _



_ _ _ _ _ _ _ _ _ _ _ _  
________  ~0~

• 18. Geoffr ion , A . M . ,  and Marsten , R.E. , “Integer

Programming Algorithms: A Framework and

State—of-the-Art Survey,” Management Science, Vol.

18. No. 9, (May 1972) , pp.465 — 491.

19. Glover, F., “Integer Programming over a Finite

Additive Group,” SIAM Journal of Control, Vol. 7,

• No. 2, (May 1967) , pp. 213—231 .

20. Glo wer,  F . ,  “Surrogate Constraints,” Operations

Research, Vol. 16, No. 4, (July—August 1968),

pp. 741—749.

O 21. Glover , F., “Surrogate Constraint Duality in

Mathematical Programming,” Operations Research,

Vol. 23, No. 3, (May—June 1975), pp. 434—451.

22. Glower, F., and Nulvey,  J.M., “Network—Related

Scheduling Models for Problems with Quasi—Adjacency

and Block Adjacency Structure,” Working Paper HBS

• 76—3, Graduate School of Business Administration,

Harvard University, (1976).

231 
-



23. Goff in, J.L., “On the Finite Convergence of the

• Relaxation Method ORC 71—36 . University of

California, Berkeley, (1971).

24. Goff in, J . L .,  “On Convergence Rates of Subgradient

Optimization Methods,” Working Paper No. 76—34,

Facul ty of Manage m en t, McGill University, (August

1976), (to appear in Mathematical Programming).

25. Greenberg, N.J., and Pierskalla, V.P., “Surrogate

Mathematical Programs,” Oçeration s Research, Vol.

18, No. 5, (Septembe r—October 1970) , pp. 924—939.

26. Held, P1., and Karp, R.M., “The Traveling—Salesman
O Problem and Minimum Spanning Trees,” Operations

Research , Vol. 18, No. 6, (November— December

1970), pp. 1138— 1162.

27. Held , N., and Karp, R.M., “The Traveling— Salesman

Problem and Minimum Spanning Trees: Part II,”

• Mathematical  Programming Study 1, (1971), pp.

O 

6—25.

232

• — • —~~~~~ —- •— — - - O - • —~ —-—— - - - -—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • • — — — — — —



_ _ _ _ _ _  _ _ _  0~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0~~~~
_

~0~~~~ O

28. Held, N., Wolfe, P., and Crow der, H., “Validation

of Subgradient Optimization,” Mathematical

Programming Study 6, (19714) , pp. 62—88.

29. Karwan , N.H., and Rardin , R.L., “Surrogate Dual

Multiplier Search Procedures in Integer

Programming,” Report Series No. J-76— 33 , School of

Industrial  and systems Engineering,  Georgia

Institute of Technology , (October 1976) .

• 30. Kennington , J .L. and Shalaby, N., “An Effective

Subgradient Procedure for Minimal Cost
• £ Multicoumodity Flow Problems,” Management Science,

Vol. 23, No. 9 , (M ay 1977) , pp. 994— 1004 .

31. Koijonen , S., and Tamminen , P1., “Bus Crew

Scheduling at Helsinki city Transport,” presented

at the Nordic Operations Analysis Conference (NOAK

77), (October 1977).

32. Magnanti, T.L., “Optimization for Sparse Systems.”

in Sparse Matrix Com putations (J.R. Bunch and D.J.

Rose, editors), Academic Press, New York, (1976),

pp. 147—176.

233

____ 0 0 0 0 00 0 ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ o ~~~~~~ •!



33. Magnanti , T.L. and Golden, B.L., “Transportation

Planning : Network Models and their Implementation ,”

Technical Report No. 1143, Operations Research

Center, Massachusetts Institute of Technology,

(January 1978), (to appear in Studies in Operations

Management; A.C. fla x , editor).

34. Maier—Rothe, C., and Wolfe, H.E., “Cyclical

Scheduling and Allocation of Nursing Staff,”

Socio— Economic Planning Sciences, Vol. 7, No. 5,

(October 1973), pp. 471—1487.

35. Marsten, N.E., “An Implici t Enumeration Algorith m

for the Set Partitioning Problem with Side

Constraints,” Working Paper No. 181, Western

Manage ment Science Institute, University of

California, Los Angeles, (October 1971).

~j. 36. Marsten, N.E., and Norm , T . L.,  “A I!ybrid Approach

to Discrete Mathematical Programming,” Mathematical

Programming, Vol. 14, No. 1, (January 1978),

• pp. 21—40.

2314 -

0 0 
• • O • •-

~~~~~~~~~~~ 

0

L. •~~ _0~~ —- ~~~ ~~~~~~ ~~~~~~~~~~~~~

37. flotzkin, T.S., and Schoenberg, 1.3., “The

Relaxation Method for Linear Inequalities,”

Canadian Journal of Mathematics, Vol. 6, No. 3,

(1954), pp. 393—404.

38. Nulvey, J. N., “A Network Relaxation Approach for the

Set Partitioning and Set Covering Models,” Working

Paper fiBS 75—37, Graduate School of Business

Administration, Harvard University, (1975).

L 39. Nemhauser , G. L. , private communication , (March

1978).

£40. Orlin, J., “Quick Optimal Weekly Scheduling with

Two Consecutive Days Off,” Technical Report 77—1 ,

Department of Operations Research, Stanford

University, (January 1977)

41. Poijak, B.T., “A General Method of solving Extremum

Problems,” Soviet Mathematics Doklady, Vol. 8, No.

3, (M ay—June 1967) , PP. 593— 597.

42. Segal, N., “The Operator—Scheduling Problem : A

N etwork-Flow Approach ,” Ope ra ti ons Researc h , Vol .

22, NO. 4, (July—August 1974), Pp. 808—823.

•
O 0 .O~~

_ _
_•

I

$3. Shapiro , .J. P. , “Dynamic Programming Algorithms for 4

the Integer Programming Problem — I: The Integer

Programming Problem Viewed as a Knapsack Type

Problem ,” Operations Research, Vol. 16, No. 1,

(January—February 1968) , pp. 103—121.

44 . Shapiro , J. F. , and Wagner , N . M . , “A Finite Renewal

Algorithm for the Knapsack and Turnpike Models,”

Operations Research, Vol. 15, No. 2 , (March—

April 1967), pp. 319—341.

45. Tibrevala, N., Philippe, D., and Browne, 3.,

“Optimal Scheduling of Two Consecutive Idle

Periods,” Managemen t Science, Vol. 19, No. 1,

(September 1972), pp. 71—75.

46. Tucker, A., “Matrix Characterization of

Circular—Arc Graphs,” Pacific Journal of

Mathematics, Vol. 39, No. 2, (1971),

pp. 535—5145.

47. Veinott , A. ?. , and Wagner , H.N., “Optimal Capacity

Scheduling — I,” Operations Research, Vol. 10, No.

14, (1962) , pp. 518—532.

I 236

________ - ~-~~ - -•-— -———------—--•—— -— ~~~~~~0~~ ~~~~~ _ 000 __ 0__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

